Spaces:
Sleeping
Sleeping
Commit
·
5c80b12
1
Parent(s):
869b2b3
chore: remove hsare
Browse files
main.py
CHANGED
@@ -5,7 +5,7 @@ from huggingface_hub import PyTorchModelHubMixin
|
|
5 |
from torchvision.models import mobilenet_v3_large
|
6 |
from torchvision.transforms import v2
|
7 |
from PIL import Image
|
8 |
-
|
9 |
|
10 |
|
11 |
class TrashMobileNet(nn.Module, PyTorchModelHubMixin):
|
@@ -24,12 +24,10 @@ class TrashMobileNet(nn.Module, PyTorchModelHubMixin):
|
|
24 |
return x
|
25 |
|
26 |
|
27 |
-
# Load the model from Hugging Face Hub
|
28 |
model_name = "pradanaadn/trash-clasification"
|
29 |
model = TrashMobileNet.from_pretrained(model_name)
|
30 |
model.eval()
|
31 |
|
32 |
-
# Define the image transformations
|
33 |
transform = v2.Compose([
|
34 |
v2.Resize((224, 224)),
|
35 |
v2.ToImage(),
|
@@ -38,20 +36,18 @@ transform = v2.Compose([
|
|
38 |
|
39 |
|
40 |
def predict(image):
|
41 |
-
|
42 |
-
Prediction function that takes a Gradio image input and returns class probabilities
|
43 |
-
"""
|
44 |
labels = ["cardboard", "glass", "metal", "paper", "plastic", "trash"]
|
45 |
|
46 |
-
|
47 |
if not isinstance(image, Image.Image):
|
48 |
image = Image.fromarray(image)
|
49 |
|
50 |
-
|
51 |
image_tensor = transform(image)
|
52 |
image_tensor = image_tensor.unsqueeze(0)
|
53 |
|
54 |
-
|
55 |
with torch.no_grad():
|
56 |
outputs = model(image_tensor)
|
57 |
probabilities = torch.nn.functional.softmax(outputs, dim=1)
|
@@ -63,7 +59,6 @@ def predict(image):
|
|
63 |
|
64 |
|
65 |
|
66 |
-
# Create example images if they don't exist (you would need to provide these images)
|
67 |
examples = [
|
68 |
["examples/cardbox.jpeg", "A cardboard box"],
|
69 |
["examples/glass.jpeg", "A glass bottle"],
|
@@ -106,4 +101,4 @@ with gr.Blocks() as iface:
|
|
106 |
|
107 |
|
108 |
# Launch the interface
|
109 |
-
iface.launch(
|
|
|
5 |
from torchvision.models import mobilenet_v3_large
|
6 |
from torchvision.transforms import v2
|
7 |
from PIL import Image
|
8 |
+
|
9 |
|
10 |
|
11 |
class TrashMobileNet(nn.Module, PyTorchModelHubMixin):
|
|
|
24 |
return x
|
25 |
|
26 |
|
|
|
27 |
model_name = "pradanaadn/trash-clasification"
|
28 |
model = TrashMobileNet.from_pretrained(model_name)
|
29 |
model.eval()
|
30 |
|
|
|
31 |
transform = v2.Compose([
|
32 |
v2.Resize((224, 224)),
|
33 |
v2.ToImage(),
|
|
|
36 |
|
37 |
|
38 |
def predict(image):
|
39 |
+
|
|
|
|
|
40 |
labels = ["cardboard", "glass", "metal", "paper", "plastic", "trash"]
|
41 |
|
42 |
+
|
43 |
if not isinstance(image, Image.Image):
|
44 |
image = Image.fromarray(image)
|
45 |
|
46 |
+
|
47 |
image_tensor = transform(image)
|
48 |
image_tensor = image_tensor.unsqueeze(0)
|
49 |
|
50 |
+
|
51 |
with torch.no_grad():
|
52 |
outputs = model(image_tensor)
|
53 |
probabilities = torch.nn.functional.softmax(outputs, dim=1)
|
|
|
59 |
|
60 |
|
61 |
|
|
|
62 |
examples = [
|
63 |
["examples/cardbox.jpeg", "A cardboard box"],
|
64 |
["examples/glass.jpeg", "A glass bottle"],
|
|
|
101 |
|
102 |
|
103 |
# Launch the interface
|
104 |
+
iface.launch()
|