Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
x = st.slider('Select a value')
|
4 |
+
st.write(x, 'squared is', x * x)
|
5 |
+
|
6 |
+
"""Generating deployment files."""
|
7 |
+
|
8 |
+
import shutil
|
9 |
+
|
10 |
+
from pathlib import Path
|
11 |
+
|
12 |
+
import pandas as pd
|
13 |
+
|
14 |
+
from concrete.ml.sklearn import LogisticRegression as ConcreteLogisticRegression
|
15 |
+
from concrete.ml.deployment import FHEModelDev
|
16 |
+
|
17 |
+
|
18 |
+
# Data files location
|
19 |
+
TRAINING_FILE_NAME = "./data/Training_preprocessed.csv"
|
20 |
+
TESTING_FILE_NAME = "./data/Testing_preprocessed.csv"
|
21 |
+
|
22 |
+
# Load data
|
23 |
+
df_train = pd.read_csv(TRAINING_FILE_NAME)
|
24 |
+
df_test = pd.read_csv(TESTING_FILE_NAME)
|
25 |
+
|
26 |
+
# Split the data into X_train, y_train, X_test_, y_test sets
|
27 |
+
TARGET_COLUMN = ["prognosis_encoded", "prognosis"]
|
28 |
+
|
29 |
+
y_train = df_train[TARGET_COLUMN[0]].values.flatten()
|
30 |
+
y_test = df_test[TARGET_COLUMN[0]].values.flatten()
|
31 |
+
|
32 |
+
X_train = df_train.drop(TARGET_COLUMN, axis=1)
|
33 |
+
X_test = df_test.drop(TARGET_COLUMN, axis=1)
|
34 |
+
|
35 |
+
# Concrete ML model
|
36 |
+
|
37 |
+
# Models parameters
|
38 |
+
optimal_param = {"C": 0.9, "n_bits": 13, "solver": "sag", "multi_class": "auto"}
|
39 |
+
|
40 |
+
clf = ConcreteLogisticRegression(**optimal_param)
|
41 |
+
|
42 |
+
# Fit the model
|
43 |
+
clf.fit(X_train, y_train)
|
44 |
+
|
45 |
+
# Compile the model
|
46 |
+
fhe_circuit = clf.compile(X_train)
|
47 |
+
|
48 |
+
fhe_circuit.client.keygen(force=False)
|
49 |
+
|
50 |
+
path_to_model = Path("./deployment_files/").resolve()
|
51 |
+
|
52 |
+
if path_to_model.exists():
|
53 |
+
shutil.rmtree(path_to_model)
|
54 |
+
|
55 |
+
dev = FHEModelDev(path_to_model, clf)
|
56 |
+
|
57 |
+
dev.save(via_mlir=True)
|