File size: 7,079 Bytes
25ec159
 
 
 
 
 
 
 
 
 
 
 
 
 
aeb2cab
 
25ec159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aeb2cab
25ec159
aeb2cab
25ec159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
# Import Dependencies
import yaml
from joblib import dump, load
import pandas as pd
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
# Naive Bayes Approach
from sklearn.naive_bayes import MultinomialNB
# Trees Approach
from sklearn.tree import DecisionTreeClassifier
# Ensemble Approach
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
import seaborn as sn
import matplotlib.pyplot as plt
from concrete.ml.sklearn import DecisionTreeClassifier as ConcreteDecisionTreeClassifier
from concrete.ml.sklearn import XGBClassifier as ConcreteXGBClassifier


class DiseasePrediction:
    # Initialize and Load the Config File
    def __init__(self, model_name=None):
        # Load Config File
        try:
            with open('./config.yaml', 'r') as f:
                self.config = yaml.safe_load(f)
        except Exception as e:
            print("Error reading Config file...")

        # Verbose
        self.verbose = self.config['verbose']
        # Load Training Data
        self.train_features, self.train_labels, self.train_df = self._load_train_dataset()
        # Load Test Data
        self.test_features, self.test_labels, self.test_df = self._load_test_dataset()
        # Feature Correlation in Training Data
        self._feature_correlation(data_frame=self.train_df, show_fig=False)
        # Model Definition
        self.model_name = model_name
        # Model Save Path
        self.model_save_path = self.config['model_save_path']

    # Function to Load Train Dataset
    def _load_train_dataset(self):
        df_train = pd.read_csv(self.config['dataset']['training_data_path'])
        cols = df_train.columns
        cols = cols[:-2]
        train_features = df_train[cols]
        train_labels = df_train['prognosis']

        # Check for data sanity
        assert (len(train_features.iloc[0]) == 132)
        assert (len(train_labels) == train_features.shape[0])

        if self.verbose:
            print("Length of Training Data: ", df_train.shape)
            print("Training Features: ", train_features.shape)
            print("Training Labels: ", train_labels.shape)
        return train_features, train_labels, df_train

    # Function to Load Test Dataset
    def _load_test_dataset(self):
        df_test = pd.read_csv(self.config['dataset']['test_data_path'])
        cols = df_test.columns
        cols = cols[:-1]
        test_features = df_test[cols]
        test_labels = df_test['prognosis']

        # Check for data sanity
        assert (len(test_features.iloc[0]) == 132)
        assert (len(test_labels) == test_features.shape[0])

        if self.verbose:
            print("Length of Test Data: ", df_test.shape)
            print("Test Features: ", test_features.shape)
            print("Test Labels: ", test_labels.shape)
        return test_features, test_labels, df_test

    # Features Correlation
    def _feature_correlation(self, data_frame=None, show_fig=False):
        # Get Feature Correlation
        corr = data_frame.corr()
        sn.heatmap(corr, square=True, annot=False, cmap="YlGnBu")
        plt.title("Feature Correlation")
        plt.tight_layout()
        if show_fig:
            plt.show()
        plt.savefig('feature_correlation.png')

    # Dataset Train Validation Split
    def _train_val_split(self):
        X_train, X_val, y_train, y_val = train_test_split(self.train_features, self.train_labels,
                                                          test_size=self.config['dataset']['validation_size'],
                                                          random_state=self.config['random_state'])

        if self.verbose:
            print("Number of Training Features: {0}\tNumber of Training Labels: {1}".format(len(X_train), len(y_train)))
            print("Number of Validation Features: {0}\tNumber of Validation Labels: {1}".format(len(X_val), len(y_val)))
        return X_train, y_train, X_val, y_val

    # Model Selection
    def select_model(self):
        if self.model_name == 'mnb':
            self.clf = MultinomialNB()
        elif self.model_name == 'decision_tree':
            self.clf = ConcreteDecisionTreeClassifier(criterion=self.config['model']['decision_tree']['criterion'])
        elif self.model_name == 'gradient_boost':
            self.clf = ConcreteXGBClassifier(n_estimators=self.config['model']['gradient_boost']['n_estimators'],
                                                  criterion=self.config['model']['gradient_boost']['criterion'])
        return self.clf

    # ML Model
    def train_model(self):
        # Get the Data
        X_train, y_train, X_val, y_val = self._train_val_split()
        classifier = self.select_model()
        # Training the Model
        classifier = classifier.fit(X_train, y_train)
        # Trained Model Evaluation on Validation Dataset
        confidence = classifier.score(X_val, y_val)
        # Validation Data Prediction
        y_pred = classifier.predict(X_val)
        # Model Validation Accuracy
        accuracy = accuracy_score(y_val, y_pred)
        # Model Confusion Matrix
        conf_mat = confusion_matrix(y_val, y_pred)
        # Model Classification Report
        clf_report = classification_report(y_val, y_pred)
        # Model Cross Validation Score
        score = cross_val_score(classifier, X_val, y_val, cv=3)

        if self.verbose:
            print('\nTraining Accuracy: ', confidence)
            print('\nValidation Prediction: ', y_pred)
            print('\nValidation Accuracy: ', accuracy)
            print('\nValidation Confusion Matrix: \n', conf_mat)
            print('\nCross Validation Score: \n', score)
            print('\nClassification Report: \n', clf_report)

        # Save Trained Model
        dump(classifier, str(self.model_save_path + self.model_name + ".joblib"))

    # Function to Make Predictions on Test Data
    def make_prediction(self, saved_model_name=None, test_data=None):
        try:
            # Load Trained Model
            clf = load(str(self.model_save_path + saved_model_name + ".joblib"))
        except Exception as e:
            print("Model not found...")

        if test_data is not None:
            result = clf.predict(test_data)
            return result
        else:
            result = clf.predict(self.test_features)
        accuracy = accuracy_score(self.test_labels, result)
        clf_report = classification_report(self.test_labels, result)
        return accuracy, clf_report


if __name__ == "__main__":
    # Model Currently Training
    current_model_name = 'decision_tree'
    # Instantiate the Class
    dp = DiseasePrediction(model_name=current_model_name)
    # Train the Model
    dp.train_model()
    # Get Model Performance on Test Data
    test_accuracy, classification_report = dp.make_prediction(saved_model_name=current_model_name)
    print("Model Test Accuracy: ", test_accuracy)
    print("Test Data Classification Report: \n", classification_report)