Spaces:
Sleeping
Sleeping
File size: 9,811 Bytes
9b3f85e e07d9b3 9b3f85e 64c0095 9b3f85e 66cb0dd 49c438a 66cb0dd dbef072 66cb0dd 7696dbe 406ea5e 6ac0651 7696dbe 4514277 5ba6bf7 91bb663 38c9666 7696dbe 4514277 7696dbe 4514277 7696dbe 4514277 7696dbe dfd9053 4514277 66cb0dd 49c438a 66cb0dd 2279c2d 49c438a 2279c2d 7696dbe 9d30896 9b3f85e 7257855 9b3f85e c81fbdf 9b3f85e c81fbdf 9b3f85e a5eabc6 9b3f85e 5909bfa 9b3f85e 7c66b75 23100d7 49fb715 23100d7 b35f5de 49fb715 23100d7 9b3f85e 96ed4cd 5fb6975 9d30896 27e8365 0cf944c 27e8365 49c438a 27e8365 96ed4cd 27e8365 96ed4cd c803c34 96ed4cd 34ce820 96ed4cd 9b3f85e c803c34 bc50c42 0cf944c 7d30024 0cf944c bc50c42 fc3f34a bc50c42 c81fbdf fc3f34a c81fbdf fc3f34a c81fbdf 9b3f85e 66cb0dd 49c438a 66cb0dd 9b3f85e c81fbdf 9b3f85e f7b6ec5 9b3f85e 613784c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
import pathlib
import gradio as gr
import torch
from transformers import AutoFeatureExtractor, DetrForObjectDetection
from visualization import visualize_attention_map, visualize_prediction
from style import css, description, title
from PIL import Image
def make_prediction(img, feature_extractor, model):
inputs = feature_extractor(img, return_tensors="pt")
outputs = model(**inputs)
img_size = torch.tensor([tuple(reversed(img.size))])
processed_outputs = feature_extractor.post_process(outputs, img_size)
print(outputs.keys())
return (
processed_outputs[0],
outputs["decoder_attentions"],
outputs["encoder_attentions"],
)
def construct_model_name(
experiment_type,
convbase,
attention_heads_num,
enc_dec_layers,
ffn_dim,
act_func,
d_model,
dilation=None
):
base = "polejowska/"
if convbase == "RESNET-50":
base += "detr-r50"
elif convbase == "RESNET-101":
if enc_dec_layers == 6:
return "polejowska/detr-r101-official"
elif enc_dec_layers == 4:
return "polejowska/detr-r101-cd45rb-8ah-4l"
elif enc_dec_layers == 12:
return "polejowska/detr-r101-cd45rb-8ah-12l"
base += "-cd45rb"
base += f"-{attention_heads_num}ah"
base += f"-{enc_dec_layers}l"
if attention_heads_num == 1:
base += "-corrected"
if d_model != 256:
base += f"-{d_model}d"
if ffn_dim == 1024:
base += "-1024ffn"
elif ffn_dim == 4096:
base += "-4096ffn-correcetd"
if act_func == "GeLU":
base += "-gelu-corrected"
if dilation == "True":
base += "-dilation-corrected"
return base
def detect_objects(
experiment_type,
convbase,
attention_heads_num,
enc_dec_layers,
ffn_dim,
act_func,
d_model,
dilation,
image_input,
threshold=0.7,
display_mask=False,
img_input_mask=None
):
if experiment_type in ["Parameters verification", "Reproducability check (1)", "Reproducability check (2)", "Reproducability check (3)", "Reproducability check (4)"]:
if experiment_type == "Parameters verification":
model_repo = construct_model_name(experiment_type, convbase, attention_heads_num, enc_dec_layers, ffn_dim, act_func, d_model, dilation)
elif experiment_type == "Reproducability check (1)":
model_repo = "polejowska/detr-r50-cd45rb-all-2ah"
elif experiment_type == "Reproducability check (2)":
model_repo = "polejowska/detr-r50-cd45rb-all-4ah"
elif experiment_type == "Reproducability check (3)":
model_repo = "polejowska/detr-r50-cd45rb-all-8ah"
elif experiment_type == "Reproducability check (4)":
model_repo = "polejowska/detr-r50-cd45rb-all-16ah"
model = DetrForObjectDetection.from_pretrained(model_repo)
feature_extractor = AutoFeatureExtractor.from_pretrained(model_repo)
(
processed_outputs,
decoder_attention_map,
encoder_attention_map,
) = make_prediction(image_input, feature_extractor, model)
viz_img = visualize_prediction(
pil_img=image_input,
output_dict=processed_outputs,
threshold=threshold,
id2label=model.config.id2label,
display_mask=display_mask,
mask=img_input_mask
)
decoder_attention_map_img = visualize_attention_map(
image_input, decoder_attention_map
)
encoder_attention_map_img = visualize_attention_map(
image_input, encoder_attention_map
)
return (
viz_img,
decoder_attention_map_img,
encoder_attention_map_img,
)
def set_example_image(example: list):
return gr.Image(value=example[0]), gr.Image(value=example[1])
with gr.Blocks(css=css) as app:
gr.Markdown(title)
with gr.Tabs():
with gr.TabItem("Image upload and detections visualization"):
with gr.Row():
with gr.Column():
with gr.Row():
experiment_type = gr.Dropdown(
value="Parameters verification",
choices=[
"Parameters verification",
"Reproducability check (1)",
"Reproducability check (2)",
"Reproducability check (3)",
"Reproducability check (4)",
],
label="Select an experiment type",
show_label=True,
)
with gr.Row():
convbase= gr.Dropdown(
value="RESNET-50",
choices=[
"RESNET-50",
"RESNET-101",
],
label="Select a base model for convolution part",
show_label=True,
)
with gr.Row():
attention_heads_num = gr.Dropdown(
value=8,
choices=[1, 2, 4, 8, 16],
label="The number of attention heads in encoder and decoder",
show_label=True,
)
with gr.Row():
enc_dec_layers = gr.Dropdown(
value=6,
choices=[4, 6, 12],
label="The number of layers in encoder and decoder",
show_label=True,
)
with gr.Row():
ffn_dim = gr.Dropdown(
value=2048,
choices=[1024, 2048, 4096],
label="Select FFN dimension",
show_label=True,
)
with gr.Row():
act_func= gr.Dropdown(
value="ReLU",
choices=[
"ReLU",
"GeLU",
],
label="Select an activation function",
show_label=True,
)
with gr.Row():
d_model= gr.Dropdown(
value=256,
choices=[128, 256, 512],
label="Select a hidden size",
show_label=True,
)
with gr.Row():
dilation= gr.Dropdown(
value="False",
choices=[
"True",
"False",
],
label="Use dilation",
show_label=True,
)
with gr.Row():
slider_input = gr.Slider(
minimum=0.2, maximum=1, value=0.7, label="Prediction threshold"
)
with gr.Column():
with gr.Row():
img_input = gr.Image(type="pil")
img_input_mask = gr.Image(type="pil", visible=False)
with gr.Row():
example_images = gr.Dataset(
components=[img_input, img_input_mask],
samples=[
[path.as_posix(), path.as_posix().replace("_HE", "_mask")]
for path in sorted(
pathlib.Path("cd45rb_test_imgs").rglob("*_HE.png")
)
],
samples_per_page=2,
)
with gr.Row():
display_mask = gr.Checkbox(
label="Display masks",
)
with gr.Row():
detect_button = gr.Button("Detect leukocytes")
with gr.Row():
with gr.Column():
img_output_from_upload = gr.Image(width=900, height=900)
with gr.TabItem("Attentions visualization"):
gr.Markdown("""Encoder attentions""")
with gr.Row():
encoder_att_map_output = gr.Image(width=850, height=850)
gr.Markdown("""Decoder attentions""")
with gr.Row():
decoder_att_map_output = gr.Image(width=850, height=850)
with gr.TabItem("Dataset details"):
with gr.Row():
gr.Markdown(description)
detect_button.click(
detect_objects,
inputs=[
experiment_type,
convbase,
attention_heads_num,
enc_dec_layers,
ffn_dim,
act_func,
d_model,
dilation,
img_input,
slider_input,
display_mask,
img_input_mask
],
outputs=[
img_output_from_upload,
decoder_att_map_output,
encoder_att_map_output,
],
queue=True,
)
example_images.click(
fn=set_example_image, inputs=[example_images], outputs=[img_input, img_input_mask],
show_progress=True
)
app.launch() |