Spaces:
Sleeping
Sleeping
File size: 7,858 Bytes
5bfab10 6d42992 5bfab10 e20cb14 5bfab10 855b1e2 5bfab10 8200379 5bfab10 26ba27b d1be1c8 5bfab10 f202322 8200379 5bfab10 ea2f0f1 d1be1c8 f202322 8200379 5bfab10 8200379 588684f 5bfab10 8200379 5bfab10 8200379 5bfab10 8200379 5bfab10 8200379 5bfab10 ad8ea78 5bfab10 d1be1c8 5bfab10 8200379 5bfab10 8200379 5bfab10 8200379 5bfab10 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
import gradio as gr
from typing import List
import cv2
import torch
import numpy as np
from pytorch_grad_cam.utils.image import show_cam_on_image
from models import YoloV3Lightning
from utils import load_model_from_checkpoint
import utils
import config as cfg
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from grad_cam import YoloGradCAM
device = torch.device('cpu')
dataset_mean, dataset_std = (0.4914, 0.4822, 0.4465), \
(0.2470, 0.2435, 0.2616)
model = YoloV3Lightning.YOLOv3LightningModel(num_classes=cfg.NUM_CLASSES, anchors=cfg.ANCHORS, S=cfg.S)
ckpt_file = 'ckpt_light2.pth'
checkpoint = load_model_from_checkpoint(device, file_name=ckpt_file)
model.load_state_dict(checkpoint['model'], strict=False)
model.eval()
scaled_anchors = (
torch.tensor(cfg.ANCHORS)
* torch.tensor(cfg.S).unsqueeze(1).unsqueeze(1).repeat(1, 3, 2)
).to(model.device)
cam = YoloGradCAM(model=model, target_layers=[model.layers[-2]], scaled_anchors=scaled_anchors, use_cuda=False)
sample_images = [
['images/000001.jpg'],
['images/000002.jpg'],
['images/000003.jpg'],
['images/000004.jpg'],
['images/000005.jpg'],
['images/000006.jpg'],
['images/000007.jpg'],
['images/000008.jpg'],
['images/000009.jpg'],
['images/000010.jpg'],
['images/000011.jpg'],
['images/000012.jpg'],
['images/000013.jpg'],
['images/000014.jpg'],
['images/000015.jpg'],
['images/000016.jpg'],
['images/000017.jpg'],
['images/000018.jpg'],
['images/000019.jpg'],
['images/000020.jpg'],
['images/000021.jpg']
]
with gr.Blocks() as app:
with gr.Row():
gr.Markdown(
"""
# YoloV3 App!
## Model is trained on PASCAL-VOC data to predict following classes -
""")
with gr.Row():
gr.HTML(
"""
<table>
<tr>
<th>aeroplane</th>
<th>bicycle</th>
<th>bird</th>
<th>boat</th>
<th>bottle</th>
<th>bus</th>
<th>car</th>
<th>cat</th>
</tr>
<tr>
<th>chair</th>
<th>cow</th>
<th>diningtable</th>
<th>dog</th>
<th>horse</th>
<th>motorbike</th>
<th>person</th>
<th>pottedplant</th>
</tr>
<tr>
<th>sheep</th>
<th>sofa</th>
<th>train</th>
<th>tvmonitor</th>
</tr>
</table>
<p>
<a href='https://github.com/piygr/yolov3/blob/main/models/YoloV3Lightning.py'>Click to see the model architecture / code </a>
</p>
"""
)
with gr.Row(visible=True) as pred_cls_col:
with gr.Column():
example_images = gr.Gallery(allow_preview=False, label='Select image ',
value=[img[0] for img in sample_images], columns=6, rows=2)
with gr.Column():
with gr.Row():
pred_image = gr.Image(label='Upload Image or Select from the gallery')
with gr.Row():
if_show_grad_cam = gr.Checkbox(value=True, label='Show Class Activation Map (What the model sees)?')
with gr.Row():
submit_btn = gr.Button("Submit", variant='primary')
clear_btn = gr.ClearButton()
with gr.Row(visible=True) as output_bk:
with gr.Column(visible=True) as output_bk:
output_img = gr.Image(interactive=False, label='Prediction Output')
with gr.Column(visible=True) as output_bk:
grad_cam_out = gr.Image(interactive=False, visible=True, label='CAM Outcome')
def show_cam_output(input):
return {
grad_cam_out: gr.update(visible=input)
}
if_show_grad_cam.change(
show_cam_output,
if_show_grad_cam,
grad_cam_out
)
def clear_data():
return {
pred_image: None,
output_img: None,
grad_cam_out: None
}
clear_btn.click(clear_data, None, [pred_image, output_img])
def on_select(evt: gr.SelectData):
return {
pred_image: sample_images[evt.index][0]
}
example_images.select(on_select, None, pred_image)
def plot_image(image, boxes):
"""Plots predicted bounding boxes on the image"""
cmap = plt.get_cmap("tab20b")
class_labels = cfg.PASCAL_CLASSES
colors = [cmap(i) for i in np.linspace(0, 1, len(class_labels))]
im = np.array(image)
height, width, _ = im.shape
# Create figure and axes
fig, ax = plt.subplots(1)
# Display the image
ax.imshow(im)
# box[0] is x midpoint, box[2] is width
# box[1] is y midpoint, box[3] is height
# Create a Rectangle patch
for box in boxes:
assert len(box) == 6, "box should contain class pred, confidence, x, y, width, height"
class_pred = box[0]
box = box[2:]
upper_left_x = box[0] - box[2] / 2
upper_left_y = box[1] - box[3] / 2
rect = patches.Rectangle(
(upper_left_x * width, upper_left_y * height),
box[2] * width,
box[3] * height,
linewidth=2,
edgecolor=colors[int(class_pred)],
facecolor="none",
)
# Add the patch to the Axes
ax.add_patch(rect)
plt.text(
upper_left_x * width,
upper_left_y * height,
s=class_labels[int(class_pred)],
color="white",
verticalalignment="top",
bbox={"color": colors[int(class_pred)], "pad": 0},
)
plt.savefig('output.png')
x = plt.show()
def predict(image: np.ndarray, iou_thresh: float = 0.5, thresh: float = 0.6, show_cam: bool = False,
transparency: float = 0.5) -> List[np.ndarray]:
with torch.no_grad():
transformed_image = cfg.grad_cam_transforms(image=image)["image"].unsqueeze(0)
output = model(transformed_image)
bboxes = [[] for _ in range(1)]
for i in range(3):
batch_size, A, S, _, _ = output[i].shape
anchor = scaled_anchors[i]
boxes_scale_i = utils.cells_to_bboxes(
output[i], anchor, S=S, is_preds=True
)
for idx, (box) in enumerate(boxes_scale_i):
bboxes[idx] += box
nms_boxes = utils.non_max_suppression(
bboxes[0], iou_threshold=iou_thresh, threshold=thresh, box_format="midpoint",
)
plot_image(image, nms_boxes)
plotted_img = 'output.png'
if not show_cam:
return [plotted_img, None]
grayscale_cam = cam(transformed_image)
img = np.array(transformed_image[0], np.float16).transpose(1, 2, 0)
cam_image = show_cam_on_image(img, grayscale_cam.transpose(1, 2, 0), use_rgb=True, image_weight=transparency)
return [plotted_img, cam_image]
def img_upload(input_img, if_cam):
if input_img is not None:
imgs = predict(input_img, show_cam=if_cam)
return {
output_img: imgs[0],
grad_cam_out: imgs[1]
}
submit_btn.click(
img_upload,
[pred_image, if_show_grad_cam],
[output_img, grad_cam_out]
)
'''
Launch the app
'''
app.launch()
|