piyushgrover commited on
Commit
d40adf7
·
verified ·
1 Parent(s): 54a9100

Upload 3 files

Browse files
Files changed (3) hide show
  1. app.py +47 -0
  2. model.py +202 -0
  3. requirements.txt +4 -0
app.py ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ from tiktoken import get_encoding
4
+ from model import GPT, GPTConfig # Replace with your actual model file/module
5
+
6
+ # Load the GPT-2 tokenizer
7
+ tokenizer = get_encoding("gpt2")
8
+
9
+ # Load your custom model (adjust as necessary for your model's implementation)
10
+ model_path = "model.pth" # Replace with the path to your model weights
11
+ model = GPT(GPTConfig()) # Initialize your custom model
12
+ model.load_state_dict(torch.load(model_path, map_location=torch.device("cpu")))
13
+ model.eval() # Set the model to evaluation mode
14
+
15
+
16
+ # Function to tokenize input and generate text
17
+ def generate_text(prompt, max_length=50):
18
+ # Tokenize the input
19
+ input_ids = tokenizer.encode(prompt)
20
+ input_tensor = torch.tensor([input_ids]) # Add batch dimension
21
+
22
+ # Generate text using the model
23
+ with torch.no_grad():
24
+ output_ids = model.generate(input_tensor, max_length=max_length) # Adjust if your model uses another method
25
+
26
+ # Decode the output back to text
27
+ generated_text = tokenizer.decode(output_ids[0].tolist())
28
+ return generated_text
29
+
30
+
31
+ # Gradio interface
32
+ with gr.Blocks() as demo:
33
+ gr.Markdown("# Custom Transformer Text Generation")
34
+ gr.Markdown("Provide an input text prompt, and the model will generate text based on it.")
35
+
36
+ with gr.Row():
37
+ input_text = gr.Textbox(label="Input Prompt", placeholder="Enter your text here...", lines=2)
38
+ max_len = gr.Slider(label="Max Output Length", minimum=10, maximum=100, value=50, step=5)
39
+
40
+ output_text = gr.Textbox(label="Generated Text", lines=5)
41
+ generate_button = gr.Button("Generate")
42
+
43
+ generate_button.click(generate_text, inputs=[input_text, max_len], outputs=output_text)
44
+
45
+ # Run the app
46
+ if __name__ == "__main__":
47
+ demo.launch()
model.py ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Solving for residual std scaling issue
2
+ import os
3
+ import math
4
+ import time
5
+ import inspect
6
+ from dataclasses import dataclass
7
+ import torch
8
+ import torch.nn as nn
9
+ from torch.nn import functional as F
10
+
11
+
12
+ class CausalSelfAttention(nn.Module):
13
+
14
+ def __init__(self, config):
15
+ super().__init__()
16
+ assert config.n_embd % config.n_head == 0
17
+ # key, query, value projections for all heads, but in a batch
18
+ self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
19
+ # output projection
20
+ self.c_proj = nn.Linear(config.n_embd, config.n_embd)
21
+ self.c_proj.NANGPT_SCALE_INIT = 1
22
+ # regularization
23
+ self.n_head = config.n_head
24
+ self.n_embd = config.n_embd
25
+ self.register_buffer("bias",
26
+ torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size,
27
+ config.block_size))
28
+
29
+ def forward(self, x):
30
+ B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
31
+ # calculate query, key, values for all heads in batch and move head forward to be the batch dim
32
+ # nh is "number of heads", hs is "head size", and C (number of channels) = nh * hs
33
+ # e.g. in GPT-2 (124M), n_head=12, hs=64, so nh*hs=C=768 channels in the Transformer
34
+ qkv = self.c_attn(x)
35
+ q, k, v = qkv.split(self.n_embd, dim=2)
36
+ k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
37
+ q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
38
+ v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
39
+
40
+ att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
41
+ att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf'))
42
+ att = F.softmax(att, dim=-1)
43
+ y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
44
+
45
+ y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
46
+ # output projection
47
+ y = self.c_proj(y)
48
+ return y
49
+
50
+
51
+ class MLP(nn.Module):
52
+
53
+ def __init__(self, config):
54
+ super().__init__()
55
+ self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
56
+ self.gelu = nn.GELU(approximate='tanh')
57
+ self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
58
+ self.c_proj.NANOGPT_SCALE_INIT = 1
59
+
60
+ def forward(self, x):
61
+ x = self.c_fc(x)
62
+ x = self.gelu(x)
63
+ x = self.c_proj(x)
64
+ return x
65
+
66
+
67
+ class Block(nn.Module):
68
+
69
+ def __init__(self, config):
70
+ super().__init__()
71
+ self.ln_1 = nn.LayerNorm(config.n_embd)
72
+ self.attn = CausalSelfAttention(config)
73
+ self.ln_2 = nn.LayerNorm(config.n_embd)
74
+ self.mlp = MLP(config)
75
+
76
+ def forward(self, x):
77
+ x = x + self.attn(self.ln_1(x))
78
+ x = x + self.mlp(self.ln_2(x))
79
+ return x
80
+
81
+
82
+ @dataclass
83
+ class GPTConfig:
84
+ block_size: int = 1024 # max sequence length
85
+ vocab_size: int = 50257 # number of tokens: 50,000 BPE merges + 256 bytes tokens + 1 <|endoftext|> token
86
+ n_layer: int = 12 # number of layers
87
+ n_head: int = 8 # number of heads
88
+ n_embd: int = 768 # embedding dimension
89
+
90
+
91
+ class GPT(nn.Module):
92
+
93
+ def __init__(self, config):
94
+ super().__init__()
95
+ self.config = config
96
+
97
+ self.transformer = nn.ModuleDict(dict(
98
+ wte=nn.Embedding(config.vocab_size, config.n_embd),
99
+ wpe=nn.Embedding(config.block_size, config.n_embd),
100
+ h=nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
101
+ ln_f=nn.LayerNorm(config.n_embd),
102
+ ))
103
+ self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
104
+
105
+ # weight sharing
106
+ self.transformer.wte.weight = self.lm_head.weight
107
+
108
+ # weight initialization
109
+ self.apply(self._init_weights)
110
+
111
+ def _init_weights(self, module):
112
+ if isinstance(module, nn.Linear):
113
+ std = 0.02
114
+ if hasattr(module, 'NANGPT_SCALE_INIT'):
115
+ std *= (2 * self.config.n_layer) ** -0.5
116
+ torch.nn.init.normal_(module.weight, mean=0.0, std=std)
117
+ if module.bias is not None:
118
+ torch.nn.init.zeros_(module.bias)
119
+ elif isinstance(module, nn.Embedding):
120
+ torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
121
+
122
+ def forward(self, idx, targets=None):
123
+ # idx is of shape (B, T)
124
+ B, T = idx.size()
125
+ assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
126
+ # forward the token and posisition embeddings
127
+ pos = torch.arange(0, T, dtype=torch.long, device=idx.device) # shape (T)
128
+ pos_emb = self.transformer.wpe(pos) # position embeddings of shape (T, n_embd)
129
+ tok_emb = self.transformer.wte(idx) # token embeddings of shape (B, T, n_embd)
130
+ x = tok_emb + pos_emb
131
+ # forward the blocks of the transformer
132
+ for block in self.transformer.h:
133
+ x = block(x)
134
+ # forward the final layernorm and the classifier
135
+ x = self.transformer.ln_f(x)
136
+ logits = self.lm_head(x) # (B, T, vocab_size)
137
+ loss = None
138
+ if targets is not None:
139
+ loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
140
+ return logits, loss
141
+
142
+ @classmethod
143
+ def from_pretrained(cls, model_type):
144
+ """Loads pretrained GPT-2 model weights from huggingface"""
145
+ assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'}
146
+ from transformers import GPT2LMHeadModel
147
+ print("loading weights from pretrained gpt: %s" % model_type)
148
+
149
+ # n_layer, n_head and n_embd are determined from model_type
150
+ config_args = {
151
+ 'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M params
152
+ 'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M params
153
+ 'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M params
154
+ 'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params
155
+ }[model_type]
156
+ config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints
157
+ config_args['block_size'] = 1024 # always 1024 for GPT model checkpoints
158
+ # create a from-scratch initialized minGPT model
159
+ config = GPTConfig(**config_args)
160
+ model = GPT(config)
161
+ sd = model.state_dict()
162
+ sd_keys = sd.keys()
163
+ sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer, not a param
164
+
165
+ # init a huggingface/transformers model
166
+ model_hf = GPT2LMHeadModel.from_pretrained(model_type)
167
+ sd_hf = model_hf.state_dict()
168
+
169
+ # copy while ensuring all of the parameters are aligned and match in names and shapes
170
+ sd_keys_hf = sd_hf.keys()
171
+ sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer
172
+ sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer)
173
+ transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
174
+ # basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear
175
+ # this means that we have to transpose these weights when we import them
176
+ assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}"
177
+ for k in sd_keys_hf:
178
+ if any(k.endswith(w) for w in transposed):
179
+ # special treatment for the Conv1D weights we need to transpose
180
+ assert sd_hf[k].shape[::-1] == sd[k].shape
181
+ with torch.no_grad():
182
+ sd[k].copy_(sd_hf[k].t())
183
+ else:
184
+ # vanilla copy over the other parameters
185
+ assert sd_hf[k].shape == sd[k].shape
186
+ with torch.no_grad():
187
+ sd[k].copy_(sd_hf[k])
188
+
189
+ return model
190
+
191
+ def generate(self, input_tensor, max_length, EOS_TOKEN_ID=50256):
192
+ output_ids = input_tensor # Start with input
193
+ self.eval()
194
+ for _ in range(max_length - input_tensor.size(1)):
195
+ logits = self(input_tensor) # Forward pass
196
+ if isinstance(logits, tuple):
197
+ logits = logits[0]
198
+ next_token = torch.argmax(logits[:, -1, :], dim=-1) # Get the next token
199
+ input_tensor = torch.cat([input_tensor, next_token.unsqueeze(0)], dim=1)
200
+ if next_token.item() == EOS_TOKEN_ID: # Stop if end-of-sequence token is generated
201
+ break
202
+ return input_tensor
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ torch
2
+ tiktoken
3
+ dataclasses
4
+ gradio