Spaces:
Sleeping
Sleeping
File size: 7,591 Bytes
6917a0d d3992a1 6917a0d d3992a1 6917a0d d3992a1 6917a0d d3992a1 6917a0d ed35f08 d3992a1 6917a0d ed35f08 6917a0d d3992a1 6917a0d ed35f08 6917a0d d3992a1 6917a0d be4bf7c 6917a0d d3992a1 6917a0d d3992a1 6917a0d d3992a1 6917a0d d3992a1 6917a0d d3992a1 6917a0d d3992a1 6917a0d d3992a1 6917a0d d3992a1 6917a0d d3992a1 6917a0d 40b30f5 ed35f08 d3992a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
import pandas as pd
import numpy as np
import clip
import gradio as gr
from utils import *
import os
# Load the open CLIP model
model, preprocess = clip.load("ViT-B/32", device=device)
from pathlib import Path
# Download from Github Releases
if not Path('unsplash-dataset/photo_ids.csv').exists():
os.system('''wget https://github.com/haltakov/natural-language-image-search/releases/download/1.0.0/photo_ids.csv -O unsplash-dataset/photo_ids.csv''')
if not Path('unsplash-dataset/features.npy').exists():
os.system('''wget https://github.com/haltakov/natural-language-image-search/releases/download/1.0.0/features.npy - O unsplash-dataset/features.npy''')
# Load the photo IDs
photo_ids = pd.read_csv("unsplash-dataset/photo_ids.csv")
photo_ids = list(photo_ids['photo_id'])
# Load the features vectors
photo_features = np.load("unsplash-dataset/features.npy")
# Convert features to Tensors: Float32 on CPU and Float16 on GPU
if device == "cpu":
photo_features = torch.from_numpy(photo_features).float().to(device)
else:
photo_features = torch.from_numpy(photo_features).to(device)
# Print some statistics
print(f"Photos loaded: {len(photo_ids)}")
from PIL import Image
def encode_search_query(net, search_query):
with torch.no_grad():
tokenized_query = clip.tokenize(search_query)
# print("tokenized_query: ", tokenized_query.shape)
# Encode and normalize the search query using CLIP
text_encoded = net.encode_text(tokenized_query.to(device))
text_encoded /= text_encoded.norm(dim=-1, keepdim=True)
# Retrieve the feature vector
# print("text_encoded: ", text_encoded.shape)
return text_encoded
def find_best_matches(text_features, photo_features, photo_ids, results_count=5):
# Compute the similarity between the search query and each photo using the Cosine similarity
# print("text_features: ", text_features.shape)
# print("photo_features: ", photo_features.shape)
similarities = (photo_features @ text_features.T).squeeze(1)
# Sort the photos by their similarity score
best_photo_idx = (-similarities).argsort()
# print("best_photo_idx: ", best_photo_idx.shape)
# print("best_photo_idx: ", best_photo_idx[:results_count])
result_list = [photo_ids[i] for i in best_photo_idx[:results_count]]
# print("result_list: ", len(result_list))
# Return the photo IDs of the best matches
return result_list
def search_unslash(net, search_query, photo_features, photo_ids, results_count=10):
# Encode the search query
text_features = encode_search_query(net, search_query)
# Find the best matches
best_photo_ids = find_best_matches(text_features, photo_features, photo_ids, results_count)
return best_photo_ids
def search_by_text_and_photo(query_text, query_photo=None, query_photo_id=None, photo_weight=0.5):
# Encode the search query
if not query_text and query_photo is None and not query_photo_id:
return []
text_features = encode_search_query(model, query_text)
if query_photo_id:
# Find the feature vector for the specified photo ID
query_photo_index = photo_ids.index(query_photo_id)
query_photo_features = photo_features[query_photo_index]
# Combine the test and photo queries and normalize again
search_features = text_features + query_photo_features * photo_weight
search_features /= search_features.norm(dim=-1, keepdim=True)
# Find the best match
best_photo_ids = find_best_matches(search_features, photo_features, photo_ids, 10)
elif query_photo is not None:
query_photo = preprocess(query_photo)
query_photo = torch.tensor(query_photo).permute(2, 0, 1)
print(query_photo.shape)
query_photo_features = model.encode_image(query_photo)
query_photo_features = query_photo_features / query_photo_features.norm(dim=1, keepdim=True)
# Combine the test and photo queries and normalize again
search_features = text_features + query_photo_features * photo_weight
search_features /= search_features.norm(dim=-1, keepdim=True)
# Find the best match
best_photo_ids = find_best_matches(search_features, photo_features, photo_ids, 10)
else:
# Display the results
print("Result...")
best_photo_ids = search_unslash(model, query_text, photo_features, photo_ids, 10)
return best_photo_ids
def fn_query_on_load():
return "Dogs playing during sunset"
with gr.Blocks() as app:
with gr.Row():
gr.Markdown(
"""
# CLIP Image Search Engine!
### Enter search query or/and select image to find the similar images
""")
with gr.Row(visible=True):
with gr.Column():
with gr.Row():
search_text = gr.Textbox(value=fn_query_on_load, placeholder='Search..', label=None)
with gr.Row():
submit_btn = gr.Button("Submit", variant='primary')
clear_btn = gr.ClearButton()
with gr.Column(visible=True) as input_image_col:
search_image = gr.Image(label='Select from results', interactive=False)
search_image_id = gr.State(None)
with gr.Row(visible=True):
output_images = gr.Gallery(allow_preview=False, label='Results.. ',
value=[], columns=5, rows=2)
output_image_ids = gr.State([])
def clear_data():
return {
search_image: None,
output_images: None,
search_text: None,
search_image_id: None,
input_image_col: gr.update(visible=True)
}
clear_btn.click(clear_data, None, [search_image, output_images, search_text, search_image_id, input_image_col])
def on_select(evt: gr.SelectData, output_image_ids):
return {
search_image: f"https://unsplash.com/photos/{output_image_ids[evt.index]}/download?w=320",
search_image_id: output_image_ids[evt.index],
input_image_col: gr.update(visible=True)
}
output_images.select(on_select, output_image_ids, [search_image, search_image_id, input_image_col])
def func_search(query, img, img_id):
best_photo_ids = []
if img_id:
best_photo_ids = search_by_text_and_photo(query, query_photo_id=img_id)
elif img is not None:
img = Image.open(img)
best_photo_ids = search_by_text_and_photo(query, query_photo=img)
elif query:
best_photo_ids = search_by_text_and_photo(query)
if len(best_photo_ids) == 0:
print("Invalid Search Request")
return {
output_image_ids: [],
output_images: []
}
else:
img_urls = []
for p_id in best_photo_ids:
url = f"https://unsplash.com/photos/{p_id}/download?w=20"
img_urls.append(url)
valid_images = filter_invalid_urls(img_urls, best_photo_ids)
return {
output_image_ids: valid_images['image_ids'],
output_images: valid_images['image_urls']
}
submit_btn.click(
func_search,
[search_text, search_image, search_image_id],
[output_images, output_image_ids]
)
def on_upload(evt: gr.SelectData):
return {
search_image_id: None
}
search_image.upload(on_upload, None, search_image_id)
'''
Launch the app
'''
app.launch()
|