|
import os |
|
|
|
import gradio as gr |
|
import numpy as np |
|
import torch |
|
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler |
|
from PIL import Image |
|
|
|
from video_diffusion.inpaint_zoom.utils.zoom_in_utils import dummy, image_grid, shrink_and_paste_on_blank, write_video |
|
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = "0" |
|
|
|
|
|
stable_paint_model_list = [ |
|
"stabilityai/stable-diffusion-2-inpainting", |
|
"runwayml/stable-diffusion-inpainting", |
|
"SG161222/Realistic_Vision_V5.1_noVAE", |
|
"SimianLuo/LCM_Dreamshaper_v7" |
|
] |
|
|
|
stable_paint_prompt_list = [ |
|
"children running in the forest , sunny, bright, by studio ghibli painting, superior quality, masterpiece, traditional Japanese colors, by Grzegorz Rutkowski, concept art", |
|
"A beautiful landscape of a mountain range with a lake in the foreground", |
|
] |
|
|
|
stable_paint_negative_prompt_list = [ |
|
"lurry, bad art, blurred, text, watermark", |
|
] |
|
|
|
|
|
class StableDiffusionZoomIn: |
|
def __init__(self): |
|
self.pipe = None |
|
|
|
def load_model(self, model_id): |
|
if self.pipe is None: |
|
self.pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float32) |
|
self.pipe.scheduler = DPMSolverMultistepScheduler.from_config(self.pipe.scheduler.config) |
|
self.pipe = self.pipe.to("cpu") |
|
self.pipe.safety_checker = dummy |
|
self.pipe.enable_attention_slicing() |
|
|
|
|
|
|
|
return self.pipe |
|
|
|
def generate_video( |
|
self, |
|
model_id, |
|
prompt, |
|
negative_prompt, |
|
guidance_scale, |
|
num_inference_steps, |
|
): |
|
pipe = self.load_model(model_id) |
|
|
|
num_init_images = 2 |
|
seed = 42 |
|
height = 512 |
|
width = height |
|
|
|
current_image = Image.new(mode="RGBA", size=(height, width)) |
|
mask_image = np.array(current_image)[:, :, 3] |
|
mask_image = Image.fromarray(255 - mask_image).convert("RGB") |
|
current_image = current_image.convert("RGB") |
|
|
|
init_images = pipe( |
|
prompt=[prompt] * num_init_images, |
|
negative_prompt=[negative_prompt] * num_init_images, |
|
image=current_image, |
|
guidance_scale=guidance_scale, |
|
height=height, |
|
width=width, |
|
generator=self.g_cuda.manual_seed(seed), |
|
mask_image=mask_image, |
|
num_inference_steps=num_inference_steps, |
|
)[0] |
|
|
|
image_grid(init_images, rows=1, cols=num_init_images) |
|
|
|
init_image_selected = 1 |
|
if num_init_images == 1: |
|
init_image_selected = 0 |
|
else: |
|
init_image_selected = init_image_selected - 1 |
|
|
|
num_outpainting_steps = 20 |
|
mask_width = 128 |
|
num_interpol_frames = 30 |
|
|
|
current_image = init_images[init_image_selected] |
|
all_frames = [] |
|
all_frames.append(current_image) |
|
|
|
for i in range(num_outpainting_steps): |
|
print("Generating image: " + str(i + 1) + " / " + str(num_outpainting_steps)) |
|
|
|
prev_image_fix = current_image |
|
|
|
prev_image = shrink_and_paste_on_blank(current_image, mask_width) |
|
|
|
current_image = prev_image |
|
|
|
|
|
mask_image = np.array(current_image)[:, :, 3] |
|
mask_image = Image.fromarray(255 - mask_image).convert("RGB") |
|
|
|
|
|
current_image = current_image.convert("RGB") |
|
images = pipe( |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
image=current_image, |
|
guidance_scale=guidance_scale, |
|
height=height, |
|
width=width, |
|
|
|
|
|
mask_image=mask_image, |
|
num_inference_steps=num_inference_steps, |
|
)[0] |
|
current_image = images[0] |
|
current_image.paste(prev_image, mask=prev_image) |
|
|
|
|
|
for j in range(num_interpol_frames - 1): |
|
interpol_image = current_image |
|
interpol_width = round( |
|
(1 - (1 - 2 * mask_width / height) ** (1 - (j + 1) / num_interpol_frames)) * height / 2 |
|
) |
|
interpol_image = interpol_image.crop( |
|
(interpol_width, interpol_width, width - interpol_width, height - interpol_width) |
|
) |
|
|
|
interpol_image = interpol_image.resize((height, width)) |
|
|
|
|
|
interpol_width2 = round((1 - (height - 2 * mask_width) / (height - 2 * interpol_width)) / 2 * height) |
|
prev_image_fix_crop = shrink_and_paste_on_blank(prev_image_fix, interpol_width2) |
|
interpol_image.paste(prev_image_fix_crop, mask=prev_image_fix_crop) |
|
|
|
all_frames.append(interpol_image) |
|
|
|
all_frames.append(current_image) |
|
|
|
video_file_name = "infinite_zoom_out" |
|
fps = 30 |
|
save_path = video_file_name + ".mp4" |
|
write_video(save_path, all_frames, fps) |
|
return save_path |
|
|
|
def app(): |
|
with gr.Blocks(): |
|
with gr.Row(): |
|
with gr.Column(): |
|
text2image_in_model_path = gr.Dropdown( |
|
choices=stable_paint_model_list, value=stable_paint_model_list[0], label="Text-Image Model Id" |
|
) |
|
|
|
text2image_in_prompt = gr.Textbox(lines=2, value=stable_paint_prompt_list[0], label="Prompt") |
|
|
|
text2image_in_negative_prompt = gr.Textbox( |
|
lines=1, value=stable_paint_negative_prompt_list[0], label="Negative Prompt" |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
text2image_in_guidance_scale = gr.Slider( |
|
minimum=0.1, maximum=15, step=0.1, value=7.5, label="Guidance Scale" |
|
) |
|
|
|
text2image_in_num_inference_step = gr.Slider( |
|
minimum=1, maximum=100, step=1, value=50, label="Num Inference Step" |
|
) |
|
|
|
text2image_in_predict = gr.Button(value="Generator") |
|
|
|
with gr.Column(): |
|
output_image = gr.Video(label="Output") |
|
|
|
text2image_in_predict.click( |
|
fn=StableDiffusionZoomIn().generate_video, |
|
inputs=[ |
|
text2image_in_model_path, |
|
text2image_in_prompt, |
|
text2image_in_negative_prompt, |
|
text2image_in_guidance_scale, |
|
text2image_in_num_inference_step, |
|
], |
|
outputs=output_image, |
|
) |
|
|