|
from pathlib import Path |
|
from typing import Union |
|
|
|
import librosa |
|
import numpy as np |
|
import torch |
|
from PIL import Image |
|
from torchvision.io import write_video |
|
from torchvision.transforms.functional import pil_to_tensor |
|
|
|
|
|
def get_timesteps_arr(audio_filepath, offset, duration, fps=30, margin=1.0, smooth=0.0): |
|
y, sr = librosa.load(audio_filepath, offset=offset, duration=duration) |
|
|
|
|
|
|
|
|
|
|
|
D = librosa.stft(y, n_fft=2048, hop_length=2048 // 4, win_length=2048) |
|
|
|
|
|
D_harmonic, D_percussive = librosa.decompose.hpss(D, margin=margin) |
|
y_percussive = librosa.istft(D_percussive, length=len(y)) |
|
|
|
|
|
spec_raw = librosa.feature.melspectrogram(y=y_percussive, sr=sr) |
|
spec_max = np.amax(spec_raw, axis=0) |
|
spec_norm = (spec_max - np.min(spec_max)) / np.ptp(spec_max) |
|
|
|
|
|
x_norm = np.linspace(0, spec_norm.shape[-1], spec_norm.shape[-1]) |
|
y_norm = np.cumsum(spec_norm) |
|
y_norm /= y_norm[-1] |
|
x_resize = np.linspace(0, y_norm.shape[-1], int(duration * fps)) |
|
|
|
T = np.interp(x_resize, x_norm, y_norm) |
|
|
|
|
|
return T * (1 - smooth) + np.linspace(0.0, 1.0, T.shape[0]) * smooth |
|
|
|
|
|
def slerp(t, v0, v1, DOT_THRESHOLD=0.9995): |
|
"""helper function to spherically interpolate two arrays v1 v2""" |
|
|
|
inputs_are_torch = isinstance(v0, torch.Tensor) |
|
if inputs_are_torch: |
|
input_device = v0.device |
|
v0 = v0.cpu().numpy() |
|
v1 = v1.cpu().numpy() |
|
|
|
dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1))) |
|
if np.abs(dot) > DOT_THRESHOLD: |
|
v2 = (1 - t) * v0 + t * v1 |
|
else: |
|
theta_0 = np.arccos(dot) |
|
sin_theta_0 = np.sin(theta_0) |
|
theta_t = theta_0 * t |
|
sin_theta_t = np.sin(theta_t) |
|
s0 = np.sin(theta_0 - theta_t) / sin_theta_0 |
|
s1 = sin_theta_t / sin_theta_0 |
|
v2 = s0 * v0 + s1 * v1 |
|
|
|
if inputs_are_torch: |
|
v2 = torch.from_numpy(v2).to(input_device) |
|
|
|
return v2 |
|
|
|
|
|
def make_video_pyav( |
|
frames_or_frame_dir: Union[str, Path, torch.Tensor], |
|
audio_filepath: Union[str, Path] = None, |
|
fps: int = 30, |
|
audio_offset: int = 0, |
|
audio_duration: int = 2, |
|
sr: int = 22050, |
|
output_filepath: Union[str, Path] = "output.mp4", |
|
glob_pattern: str = "*.png", |
|
): |
|
""" |
|
TODO - docstring here |
|
frames_or_frame_dir: (Union[str, Path, torch.Tensor]): |
|
Either a directory of images, or a tensor of shape (T, C, H, W) in range [0, 255]. |
|
""" |
|
|
|
|
|
output_filepath = str(output_filepath) |
|
|
|
if isinstance(frames_or_frame_dir, (str, Path)): |
|
frames = None |
|
for img in sorted(Path(frames_or_frame_dir).glob(glob_pattern)): |
|
frame = pil_to_tensor(Image.open(img)).unsqueeze(0) |
|
frames = frame if frames is None else torch.cat([frames, frame]) |
|
else: |
|
frames = frames_or_frame_dir |
|
|
|
|
|
frames = frames.permute(0, 2, 3, 1) |
|
|
|
if audio_filepath: |
|
|
|
audio, sr = librosa.load( |
|
audio_filepath, |
|
sr=sr, |
|
mono=True, |
|
offset=audio_offset, |
|
duration=audio_duration, |
|
) |
|
audio_tensor = torch.tensor(audio).unsqueeze(0) |
|
|
|
write_video( |
|
output_filepath, |
|
frames, |
|
fps=fps, |
|
audio_array=audio_tensor, |
|
audio_fps=sr, |
|
audio_codec="aac", |
|
options={"crf": "10", "pix_fmt": "yuv420p"}, |
|
) |
|
else: |
|
write_video( |
|
output_filepath, |
|
frames, |
|
fps=fps, |
|
options={"crf": "10", "pix_fmt": "yuv420p"}, |
|
) |
|
|
|
return output_filepath |
|
|
|
|
|
def pad_along_axis(array: np.ndarray, pad_size: int, axis: int = 0) -> np.ndarray: |
|
if pad_size <= 0: |
|
return array |
|
npad = [(0, 0)] * array.ndim |
|
npad[axis] = (0, pad_size) |
|
return np.pad(array, pad_width=npad, mode="constant", constant_values=0) |
|
|