|
from pathlib import Path |
|
|
|
import cv2 |
|
from diffusers.utils import logging |
|
from huggingface_hub import hf_hub_download |
|
from PIL import Image |
|
from torch import nn |
|
|
|
try: |
|
from basicsr.archs.rrdbnet_arch import RRDBNet |
|
from realesrgan import RealESRGANer |
|
except ImportError as e: |
|
raise ImportError( |
|
"You tried to import realesrgan without having it installed properly. To install Real-ESRGAN, run:\n\n" |
|
"pip install realesrgan" |
|
) |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class RealESRGANModel(nn.Module): |
|
def __init__(self, model_path, tile=0, tile_pad=10, pre_pad=0, fp32=False): |
|
super().__init__() |
|
try: |
|
from basicsr.archs.rrdbnet_arch import RRDBNet |
|
from realesrgan import RealESRGANer |
|
except ImportError as e: |
|
raise ImportError( |
|
"You tried to import realesrgan without having it installed properly. To install Real-ESRGAN, run:\n\n" |
|
"pip install realesrgan" |
|
) |
|
|
|
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4) |
|
self.upsampler = RealESRGANer( |
|
scale=4, model_path=model_path, model=model, tile=tile, tile_pad=tile_pad, pre_pad=pre_pad, half=not fp32 |
|
) |
|
|
|
def forward(self, image, outscale=4, convert_to_pil=True): |
|
"""Upsample an image array or path. |
|
Args: |
|
image (Union[np.ndarray, str]): Either a np array or an image path. np array is assumed to be in RGB format, |
|
and we convert it to BGR. |
|
outscale (int, optional): Amount to upscale the image. Defaults to 4. |
|
convert_to_pil (bool, optional): If True, return PIL image. Otherwise, return numpy array (BGR). Defaults to True. |
|
Returns: |
|
Union[np.ndarray, PIL.Image.Image]: An upsampled version of the input image. |
|
""" |
|
if isinstance(image, (str, Path)): |
|
img = cv2.imread(image, cv2.IMREAD_UNCHANGED) |
|
else: |
|
img = image |
|
img = (img * 255).round().astype("uint8") |
|
img = img[:, :, ::-1] |
|
|
|
image, _ = self.upsampler.enhance(img, outscale=outscale) |
|
|
|
if convert_to_pil: |
|
image = Image.fromarray(image[:, :, ::-1]) |
|
|
|
return image |
|
|
|
@classmethod |
|
def from_pretrained(cls, model_name_or_path="nateraw/real-esrgan"): |
|
"""Initialize a pretrained Real-ESRGAN upsampler. |
|
Example: |
|
```python |
|
>>> from stable_diffusion_videos import PipelineRealESRGAN |
|
>>> pipe = PipelineRealESRGAN.from_pretrained('nateraw/real-esrgan') |
|
>>> im_out = pipe('input_img.jpg') |
|
``` |
|
Args: |
|
model_name_or_path (str, optional): The Hugging Face repo ID or path to local model. Defaults to 'nateraw/real-esrgan'. |
|
Returns: |
|
stable_diffusion_videos.PipelineRealESRGAN: An instance of `PipelineRealESRGAN` instantiated from pretrained model. |
|
""" |
|
|
|
|
|
if Path(model_name_or_path).exists(): |
|
file = model_name_or_path |
|
else: |
|
file = hf_hub_download(model_name_or_path, "RealESRGAN_x4plus.pth") |
|
return cls(file) |
|
|
|
def upsample_imagefolder(self, in_dir, out_dir, suffix="out", outfile_ext=".png", recursive=False, force=False): |
|
in_dir, out_dir = Path(in_dir), Path(out_dir) |
|
if not in_dir.exists(): |
|
raise FileNotFoundError(f"Provided input directory {in_dir} does not exist") |
|
|
|
out_dir.mkdir(exist_ok=True, parents=True) |
|
|
|
generator = in_dir.rglob("*") if recursive else in_dir.glob("*") |
|
image_paths = [x for x in generator if x.suffix.lower() in [".png", ".jpg", ".jpeg"]] |
|
n_img = len(image_paths) |
|
for i, image in enumerate(image_paths): |
|
out_filepath = out_dir / (str(image.relative_to(in_dir).with_suffix("")) + suffix + outfile_ext) |
|
if not force and out_filepath.exists(): |
|
logger.info( |
|
f"[{i}/{n_img}] {out_filepath} already exists, skipping. To avoid skipping, pass force=True." |
|
) |
|
continue |
|
logger.info(f"[{i}/{n_img}] upscaling {image}") |
|
im = self(str(image)) |
|
out_filepath.parent.mkdir(parents=True, exist_ok=True) |
|
im.save(out_filepath) |
|
|