|
import json |
|
import math |
|
import random |
|
import time |
|
from pathlib import Path |
|
from uuid import uuid4 |
|
|
|
import torch |
|
from diffusers import __version__ as diffusers_version |
|
from huggingface_hub import CommitOperationAdd, create_commit, create_repo |
|
|
|
from .upsampling import RealESRGANModel |
|
from .utils import pad_along_axis |
|
|
|
|
|
def get_all_files(root: Path): |
|
dirs = [root] |
|
while len(dirs) > 0: |
|
dir = dirs.pop() |
|
for candidate in dir.iterdir(): |
|
if candidate.is_file(): |
|
yield candidate |
|
if candidate.is_dir(): |
|
dirs.append(candidate) |
|
|
|
|
|
def get_groups_of_n(n: int, iterator): |
|
assert n > 1 |
|
buffer = [] |
|
for elt in iterator: |
|
if len(buffer) == n: |
|
yield buffer |
|
buffer = [] |
|
buffer.append(elt) |
|
if len(buffer) != 0: |
|
yield buffer |
|
|
|
|
|
def upload_folder_chunked( |
|
repo_id: str, |
|
upload_dir: Path, |
|
n: int = 100, |
|
private: bool = False, |
|
create_pr: bool = False, |
|
): |
|
"""Upload a folder to the Hugging Face Hub in chunks of n files at a time. |
|
Args: |
|
repo_id (str): The repo id to upload to. |
|
upload_dir (Path): The directory to upload. |
|
n (int, *optional*, defaults to 100): The number of files to upload at a time. |
|
private (bool, *optional*): Whether to upload the repo as private. |
|
create_pr (bool, *optional*): Whether to create a PR after uploading instead of commiting directly. |
|
""" |
|
|
|
url = create_repo(repo_id, exist_ok=True, private=private, repo_type="dataset") |
|
print(f"Uploading files to: {url}") |
|
|
|
root = Path(upload_dir) |
|
if not root.exists(): |
|
raise ValueError(f"Upload directory {root} does not exist.") |
|
|
|
for i, file_paths in enumerate(get_groups_of_n(n, get_all_files(root))): |
|
print(f"Committing {file_paths}") |
|
operations = [ |
|
CommitOperationAdd( |
|
path_in_repo=f"{file_path.parent.name}/{file_path.name}", |
|
path_or_fileobj=str(file_path), |
|
) |
|
for file_path in file_paths |
|
] |
|
create_commit( |
|
repo_id=repo_id, |
|
operations=operations, |
|
commit_message=f"Upload part {i}", |
|
repo_type="dataset", |
|
create_pr=create_pr, |
|
) |
|
|
|
|
|
def generate_input_batches(pipeline, prompts, seeds, batch_size, height, width): |
|
if len(prompts) != len(seeds): |
|
raise ValueError("Number of prompts and seeds must be equal.") |
|
|
|
embeds_batch, noise_batch = None, None |
|
batch_idx = 0 |
|
for i, (prompt, seed) in enumerate(zip(prompts, seeds)): |
|
embeds = pipeline.embed_text(prompt) |
|
noise = torch.randn( |
|
(1, pipeline.unet.in_channels, height // 8, width // 8), |
|
device=pipeline.device, |
|
generator=torch.Generator(device="cpu" if pipeline.device.type == "mps" else pipeline.device).manual_seed( |
|
seed |
|
), |
|
) |
|
embeds_batch = embeds if embeds_batch is None else torch.cat([embeds_batch, embeds]) |
|
noise_batch = noise if noise_batch is None else torch.cat([noise_batch, noise]) |
|
batch_is_ready = embeds_batch.shape[0] == batch_size or i + 1 == len(prompts) |
|
if not batch_is_ready: |
|
continue |
|
yield batch_idx, embeds_batch.type(torch.cuda.HalfTensor), noise_batch.type(torch.cuda.HalfTensor) |
|
batch_idx += 1 |
|
del embeds_batch, noise_batch |
|
torch.cuda.empty_cache() |
|
embeds_batch, noise_batch = None, None |
|
|
|
|
|
def generate_images( |
|
pipeline, |
|
prompt, |
|
batch_size=1, |
|
num_batches=1, |
|
seeds=None, |
|
num_inference_steps=50, |
|
guidance_scale=7.5, |
|
output_dir="./images", |
|
image_file_ext=".jpg", |
|
upsample=False, |
|
height=512, |
|
width=512, |
|
eta=0.0, |
|
push_to_hub=False, |
|
repo_id=None, |
|
private=False, |
|
create_pr=False, |
|
name=None, |
|
): |
|
"""Generate images using the StableDiffusion pipeline. |
|
Args: |
|
pipeline (StableDiffusionWalkPipeline): The StableDiffusion pipeline instance. |
|
prompt (str): The prompt to use for the image generation. |
|
batch_size (int, *optional*, defaults to 1): The batch size to use for image generation. |
|
num_batches (int, *optional*, defaults to 1): The number of batches to generate. |
|
seeds (list[int], *optional*): The seeds to use for the image generation. |
|
num_inference_steps (int, *optional*, defaults to 50): The number of inference steps to take. |
|
guidance_scale (float, *optional*, defaults to 7.5): The guidance scale to use for image generation. |
|
output_dir (str, *optional*, defaults to "./images"): The output directory to save the images to. |
|
image_file_ext (str, *optional*, defaults to '.jpg'): The image file extension to use. |
|
upsample (bool, *optional*, defaults to False): Whether to upsample the images. |
|
height (int, *optional*, defaults to 512): The height of the images to generate. |
|
width (int, *optional*, defaults to 512): The width of the images to generate. |
|
eta (float, *optional*, defaults to 0.0): The eta parameter to use for image generation. |
|
push_to_hub (bool, *optional*, defaults to False): Whether to push the generated images to the Hugging Face Hub. |
|
repo_id (str, *optional*): The repo id to push the images to. |
|
private (bool, *optional*): Whether to push the repo as private. |
|
create_pr (bool, *optional*): Whether to create a PR after pushing instead of commiting directly. |
|
name (str, *optional*, defaults to current timestamp str): The name of the sub-directory of |
|
output_dir to save the images to. |
|
""" |
|
if push_to_hub: |
|
if repo_id is None: |
|
raise ValueError("Must provide repo_id if push_to_hub is True.") |
|
|
|
name = name or time.strftime("%Y%m%d-%H%M%S") |
|
save_path = Path(output_dir) / name |
|
save_path.mkdir(exist_ok=False, parents=True) |
|
prompt_config_path = save_path / "prompt_config.json" |
|
|
|
num_images = batch_size * num_batches |
|
seeds = seeds or [random.choice(list(range(0, 9999999))) for _ in range(num_images)] |
|
if len(seeds) != num_images: |
|
raise ValueError("Number of seeds must be equal to batch_size * num_batches.") |
|
|
|
if upsample: |
|
if getattr(pipeline, "upsampler", None) is None: |
|
pipeline.upsampler = RealESRGANModel.from_pretrained("nateraw/real-esrgan") |
|
pipeline.upsampler.to(pipeline.device) |
|
|
|
cfg = dict( |
|
prompt=prompt, |
|
guidance_scale=guidance_scale, |
|
eta=eta, |
|
num_inference_steps=num_inference_steps, |
|
upsample=upsample, |
|
height=height, |
|
width=width, |
|
scheduler=dict(pipeline.scheduler.config), |
|
tiled=pipeline.tiled, |
|
diffusers_version=diffusers_version, |
|
device_name=torch.cuda.get_device_name(0) if torch.cuda.is_available() else "unknown", |
|
) |
|
prompt_config_path.write_text(json.dumps(cfg, indent=2, sort_keys=False)) |
|
|
|
frame_index = 0 |
|
frame_filepaths = [] |
|
for batch_idx, embeds, noise in generate_input_batches( |
|
pipeline, [prompt] * num_images, seeds, batch_size, height, width |
|
): |
|
print(f"Generating batch {batch_idx}") |
|
|
|
outputs = pipeline( |
|
text_embeddings=embeds, |
|
latents=noise, |
|
num_inference_steps=num_inference_steps, |
|
guidance_scale=guidance_scale, |
|
eta=eta, |
|
height=height, |
|
width=width, |
|
output_type="pil" if not upsample else "numpy", |
|
)["images"] |
|
if upsample: |
|
images = [] |
|
for output in outputs: |
|
images.append(pipeline.upsampler(output)) |
|
else: |
|
images = outputs |
|
|
|
for image in images: |
|
frame_filepath = save_path / f"{seeds[frame_index]}{image_file_ext}" |
|
image.save(frame_filepath) |
|
frame_filepaths.append(str(frame_filepath)) |
|
frame_index += 1 |
|
|
|
return frame_filepaths |
|
|
|
if push_to_hub: |
|
upload_folder_chunked(repo_id, save_path, private=private, create_pr=create_pr) |
|
|
|
|
|
def generate_images_flax( |
|
pipeline, |
|
params, |
|
prompt, |
|
batch_size=1, |
|
num_batches=1, |
|
seeds=None, |
|
num_inference_steps=50, |
|
guidance_scale=7.5, |
|
output_dir="./images", |
|
image_file_ext=".jpg", |
|
upsample=False, |
|
height=512, |
|
width=512, |
|
push_to_hub=False, |
|
repo_id=None, |
|
private=False, |
|
create_pr=False, |
|
name=None, |
|
): |
|
import jax |
|
from flax.training.common_utils import shard |
|
|
|
"""Generate images using the StableDiffusion pipeline. |
|
Args: |
|
pipeline (StableDiffusionWalkPipeline): The StableDiffusion pipeline instance. |
|
params (`Union[Dict, FrozenDict]`): The model parameters. |
|
prompt (str): The prompt to use for the image generation. |
|
batch_size (int, *optional*, defaults to 1): The batch size to use for image generation. |
|
num_batches (int, *optional*, defaults to 1): The number of batches to generate. |
|
seeds (int, *optional*): The seed to use for the image generation. |
|
num_inference_steps (int, *optional*, defaults to 50): The number of inference steps to take. |
|
guidance_scale (float, *optional*, defaults to 7.5): The guidance scale to use for image generation. |
|
output_dir (str, *optional*, defaults to "./images"): The output directory to save the images to. |
|
image_file_ext (str, *optional*, defaults to '.jpg'): The image file extension to use. |
|
upsample (bool, *optional*, defaults to False): Whether to upsample the images. |
|
height (int, *optional*, defaults to 512): The height of the images to generate. |
|
width (int, *optional*, defaults to 512): The width of the images to generate. |
|
push_to_hub (bool, *optional*, defaults to False): Whether to push the generated images to the Hugging Face Hub. |
|
repo_id (str, *optional*): The repo id to push the images to. |
|
private (bool, *optional*): Whether to push the repo as private. |
|
create_pr (bool, *optional*): Whether to create a PR after pushing instead of commiting directly. |
|
name (str, *optional*, defaults to current timestamp str): The name of the sub-directory of |
|
output_dir to save the images to. |
|
""" |
|
if push_to_hub: |
|
if repo_id is None: |
|
raise ValueError("Must provide repo_id if push_to_hub is True.") |
|
|
|
name = name or time.strftime("%Y%m%d-%H%M%S") |
|
save_path = Path(output_dir) / name |
|
save_path.mkdir(exist_ok=False, parents=True) |
|
prompt_config_path = save_path / "prompt_config.json" |
|
|
|
num_images = batch_size * num_batches |
|
seeds = seeds or random.choice(list(range(0, 9999999))) |
|
prng_seed = jax.random.PRNGKey(seeds) |
|
|
|
if upsample: |
|
if getattr(pipeline, "upsampler", None) is None: |
|
pipeline.upsampler = RealESRGANModel.from_pretrained("nateraw/real-esrgan") |
|
if not torch.cuda.is_available(): |
|
print("Upsampling is recommended to be done on a GPU, as it is very slow on CPU") |
|
else: |
|
pipeline.upsampler = pipeline.upsampler.cuda() |
|
|
|
cfg = dict( |
|
prompt=prompt, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=num_inference_steps, |
|
upsample=upsample, |
|
height=height, |
|
width=width, |
|
scheduler=dict(pipeline.scheduler.config), |
|
|
|
diffusers_version=diffusers_version, |
|
device_name=torch.cuda.get_device_name(0) if torch.cuda.is_available() else "unknown", |
|
) |
|
prompt_config_path.write_text(json.dumps(cfg, indent=2, sort_keys=False)) |
|
|
|
NUM_TPU_CORES = jax.device_count() |
|
jit = True |
|
batch_size_total = NUM_TPU_CORES * batch_size if jit else batch_size |
|
|
|
def generate_input_batches(prompts, batch_size): |
|
prompt_batch = None |
|
for batch_idx in range(math.ceil(len(prompts) / batch_size)): |
|
prompt_batch = prompts[batch_idx * batch_size : (batch_idx + 1) * batch_size] |
|
yield batch_idx, prompt_batch |
|
|
|
frame_index = 0 |
|
frame_filepaths = [] |
|
for batch_idx, prompt_batch in generate_input_batches([prompt] * num_images, batch_size_total): |
|
|
|
print(f"Generating batches: {batch_idx*NUM_TPU_CORES} - {min((batch_idx+1)*NUM_TPU_CORES, num_batches)}") |
|
prompt_ids_batch = pipeline.prepare_inputs(prompt_batch) |
|
prng_seed_batch = prng_seed |
|
|
|
if jit: |
|
padded = False |
|
|
|
if len(prompt_batch) % NUM_TPU_CORES != 0: |
|
padded = True |
|
pad_size = NUM_TPU_CORES - (len(prompt_batch) % NUM_TPU_CORES) |
|
|
|
prompt_ids_batch = pad_along_axis(prompt_ids_batch, pad_size, axis=0) |
|
|
|
prompt_ids_batch = shard(prompt_ids_batch) |
|
prng_seed_batch = jax.random.split(prng_seed, jax.device_count()) |
|
|
|
outputs = pipeline( |
|
params, |
|
prng_seed=prng_seed_batch, |
|
prompt_ids=prompt_ids_batch, |
|
height=height, |
|
width=width, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=num_inference_steps, |
|
output_type="pil" if not upsample else "numpy", |
|
jit=jit, |
|
)["images"] |
|
|
|
if jit: |
|
|
|
if padded: |
|
outputs = outputs[:-pad_size] |
|
|
|
if upsample: |
|
images = [] |
|
for output in outputs: |
|
images.append(pipeline.upsampler(output)) |
|
else: |
|
images = outputs |
|
|
|
for image in images: |
|
uuid = str(uuid4()) |
|
frame_filepath = save_path / f"{uuid}{image_file_ext}" |
|
image.save(frame_filepath) |
|
frame_filepaths.append(str(frame_filepath)) |
|
frame_index += 1 |
|
|
|
return frame_filepaths |
|
|
|
if push_to_hub: |
|
upload_folder_chunked(repo_id, save_path, private=private, create_pr=create_pr) |
|
|