added embedding endpoints
Browse files- Dockerfile +8 -2
- docker-compose.yaml +15 -2
- requirements.txt +1 -0
- src/embeddings.py +356 -0
- src/main.py +193 -1
Dockerfile
CHANGED
|
@@ -4,14 +4,20 @@ RUN useradd -m -u 1000 user
|
|
| 4 |
USER user
|
| 5 |
|
| 6 |
ENV HOME=/home/user \
|
| 7 |
-
PATH=/home/user/.local/bin:$PATH
|
|
|
|
|
|
|
| 8 |
|
| 9 |
WORKDIR $HOME/app
|
| 10 |
|
|
|
|
| 11 |
COPY --chown=user requirements.txt requirements.txt
|
| 12 |
|
| 13 |
-
|
|
|
|
|
|
|
| 14 |
|
|
|
|
| 15 |
COPY --chown=user . .
|
| 16 |
|
| 17 |
CMD ["uvicorn", "src.main:app", "--host", "0.0.0.0", "--port", "7860"]
|
|
|
|
| 4 |
USER user
|
| 5 |
|
| 6 |
ENV HOME=/home/user \
|
| 7 |
+
PATH=/home/user/.local/bin:$PATH \
|
| 8 |
+
PYTHONDONTWRITEBYTECODE=1 \
|
| 9 |
+
PYTHONUNBUFFERED=1
|
| 10 |
|
| 11 |
WORKDIR $HOME/app
|
| 12 |
|
| 13 |
+
# Copy requirements first for better caching
|
| 14 |
COPY --chown=user requirements.txt requirements.txt
|
| 15 |
|
| 16 |
+
# Install dependencies with caching
|
| 17 |
+
RUN pip install --upgrade pip && \
|
| 18 |
+
pip install --no-cache-dir --user -r requirements.txt
|
| 19 |
|
| 20 |
+
# Copy application code
|
| 21 |
COPY --chown=user . .
|
| 22 |
|
| 23 |
CMD ["uvicorn", "src.main:app", "--host", "0.0.0.0", "--port", "7860"]
|
docker-compose.yaml
CHANGED
|
@@ -2,14 +2,27 @@ services:
|
|
| 2 |
server:
|
| 3 |
build:
|
| 4 |
context: .
|
|
|
|
|
|
|
|
|
|
| 5 |
ports:
|
| 6 |
- 7860:7860
|
| 7 |
develop:
|
| 8 |
watch:
|
|
|
|
| 9 |
- action: rebuild
|
| 10 |
-
path: .
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
volumes:
|
| 12 |
- python-cache:/home/user/.cache
|
|
|
|
|
|
|
| 13 |
|
| 14 |
volumes:
|
| 15 |
-
python-cache:
|
|
|
|
|
|
| 2 |
server:
|
| 3 |
build:
|
| 4 |
context: .
|
| 5 |
+
# Enable BuildKit for better caching
|
| 6 |
+
cache_from:
|
| 7 |
+
- python:3.9
|
| 8 |
ports:
|
| 9 |
- 7860:7860
|
| 10 |
develop:
|
| 11 |
watch:
|
| 12 |
+
# Only rebuild on requirements.txt changes, sync code changes otherwise
|
| 13 |
- action: rebuild
|
| 14 |
+
path: ./requirements.txt
|
| 15 |
+
- action: sync
|
| 16 |
+
path: ./src
|
| 17 |
+
target: /home/user/app/src
|
| 18 |
+
- action: sync
|
| 19 |
+
path: ./README.md
|
| 20 |
+
target: /home/user/app/README.md
|
| 21 |
volumes:
|
| 22 |
- python-cache:/home/user/.cache
|
| 23 |
+
# Cache pip packages
|
| 24 |
+
- pip-cache:/home/user/.cache/pip
|
| 25 |
|
| 26 |
volumes:
|
| 27 |
+
python-cache:
|
| 28 |
+
pip-cache:
|
requirements.txt
CHANGED
|
@@ -6,4 +6,5 @@ sentencepiece
|
|
| 6 |
sacremoses
|
| 7 |
torch
|
| 8 |
pillow
|
|
|
|
| 9 |
# Optional dependencies for specific features
|
|
|
|
| 6 |
sacremoses
|
| 7 |
torch
|
| 8 |
pillow
|
| 9 |
+
protobuf
|
| 10 |
# Optional dependencies for specific features
|
src/embeddings.py
ADDED
|
@@ -0,0 +1,356 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -------------------------------------------------------------------
|
| 2 |
+
# This source file is available under the terms of the
|
| 3 |
+
# Pimcore Open Core License (POCL)
|
| 4 |
+
# Full copyright and license information is available in
|
| 5 |
+
# LICENSE.md which is distributed with this source code.
|
| 6 |
+
#
|
| 7 |
+
# @copyright Copyright (c) Pimcore GmbH (https://www.pimcore.com)
|
| 8 |
+
# @license Pimcore Open Core License (POCL)
|
| 9 |
+
# -------------------------------------------------------------------
|
| 10 |
+
|
| 11 |
+
import torch
|
| 12 |
+
import base64
|
| 13 |
+
import io
|
| 14 |
+
import logging
|
| 15 |
+
from PIL import Image
|
| 16 |
+
from pydantic import BaseModel
|
| 17 |
+
from fastapi import Request, HTTPException
|
| 18 |
+
import json
|
| 19 |
+
from typing import Optional, Union, Dict, Any
|
| 20 |
+
from transformers import AutoProcessor, AutoModel
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
class EmbeddingRequest(BaseModel):
|
| 24 |
+
inputs: str
|
| 25 |
+
parameters: Optional[dict] = None
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
class BaseEmbeddingTaskService:
|
| 29 |
+
"""Base class for embedding services with common functionality"""
|
| 30 |
+
|
| 31 |
+
def __init__(self, logger: logging.Logger):
|
| 32 |
+
self._logger = logger
|
| 33 |
+
self._model_cache = {}
|
| 34 |
+
self._processor_cache = {}
|
| 35 |
+
|
| 36 |
+
async def get_embedding_request(self, request: Request) -> EmbeddingRequest:
|
| 37 |
+
"""Parse request body into EmbeddingRequest"""
|
| 38 |
+
content_type = request.headers.get("content-type", "")
|
| 39 |
+
if content_type.startswith("application/json"):
|
| 40 |
+
data = await request.json()
|
| 41 |
+
return EmbeddingRequest(**data)
|
| 42 |
+
if content_type.startswith("application/x-www-form-urlencoded"):
|
| 43 |
+
raw = await request.body()
|
| 44 |
+
try:
|
| 45 |
+
data = json.loads(raw)
|
| 46 |
+
return EmbeddingRequest(**data)
|
| 47 |
+
except Exception:
|
| 48 |
+
try:
|
| 49 |
+
data = json.loads(raw.decode("utf-8"))
|
| 50 |
+
return EmbeddingRequest(**data)
|
| 51 |
+
except Exception:
|
| 52 |
+
raise HTTPException(status_code=400, detail="Invalid request body")
|
| 53 |
+
raise HTTPException(status_code=400, detail="Unsupported content type")
|
| 54 |
+
|
| 55 |
+
def _get_device(self) -> torch.device:
|
| 56 |
+
"""Get the appropriate device (GPU if available, otherwise CPU)"""
|
| 57 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 58 |
+
self._logger.info(f"Using device: {device}")
|
| 59 |
+
return device
|
| 60 |
+
|
| 61 |
+
def _load_processor(self, model_name: str):
|
| 62 |
+
"""Load and cache processor for the model using AutoProcessor"""
|
| 63 |
+
if model_name not in self._processor_cache:
|
| 64 |
+
try:
|
| 65 |
+
self._processor_cache[model_name] = AutoProcessor.from_pretrained(model_name)
|
| 66 |
+
self._logger.info(f"Loaded processor for model: {model_name}")
|
| 67 |
+
except Exception as e:
|
| 68 |
+
self._logger.error(f"Failed to load processor for model '{model_name}': {str(e)}")
|
| 69 |
+
raise HTTPException(
|
| 70 |
+
status_code=404,
|
| 71 |
+
detail=f"Processor for model '{model_name}' could not be loaded: {str(e)}"
|
| 72 |
+
)
|
| 73 |
+
return self._processor_cache[model_name]
|
| 74 |
+
|
| 75 |
+
def _load_model(self, model_name: str, cache_suffix: str = ""):
|
| 76 |
+
"""Load and cache model using AutoModel"""
|
| 77 |
+
cache_key = f"{model_name}{cache_suffix}"
|
| 78 |
+
if cache_key not in self._model_cache:
|
| 79 |
+
try:
|
| 80 |
+
device = self._get_device()
|
| 81 |
+
model = AutoModel.from_pretrained(model_name)
|
| 82 |
+
model.to(device)
|
| 83 |
+
self._model_cache[cache_key] = model
|
| 84 |
+
self._logger.info(f"Loaded model: {model_name} on {device}")
|
| 85 |
+
except Exception as e:
|
| 86 |
+
self._logger.error(f"Failed to load model '{model_name}': {str(e)}")
|
| 87 |
+
raise HTTPException(
|
| 88 |
+
status_code=404,
|
| 89 |
+
detail=f"Model '{model_name}' could not be loaded: {str(e)}"
|
| 90 |
+
)
|
| 91 |
+
return self._model_cache[cache_key]
|
| 92 |
+
|
| 93 |
+
async def get_embedding_vector_size(self, model_name: str) -> dict:
|
| 94 |
+
"""Get the vector size of embeddings for a given model"""
|
| 95 |
+
try:
|
| 96 |
+
# Load the model to get its configuration
|
| 97 |
+
model = self._load_model(model_name)
|
| 98 |
+
|
| 99 |
+
# Try to get the embedding dimension from the model configuration
|
| 100 |
+
used_attribute = None
|
| 101 |
+
if hasattr(model.config, 'hidden_size'):
|
| 102 |
+
vector_size = model.config.hidden_size
|
| 103 |
+
used_attribute = "hidden_size"
|
| 104 |
+
elif hasattr(model.config, 'projection_dim'):
|
| 105 |
+
vector_size = model.config.projection_dim
|
| 106 |
+
used_attribute = "projection_dim"
|
| 107 |
+
elif hasattr(model.config, 'd_model'):
|
| 108 |
+
vector_size = model.config.d_model
|
| 109 |
+
used_attribute = "d_model"
|
| 110 |
+
elif hasattr(model.config, 'text_config') and hasattr(model.config.text_config, 'hidden_size'):
|
| 111 |
+
vector_size = model.config.text_config.hidden_size
|
| 112 |
+
used_attribute = "text_config.hidden_size"
|
| 113 |
+
elif hasattr(model.config, 'vision_config') and hasattr(model.config.vision_config, 'hidden_size'):
|
| 114 |
+
vector_size = model.config.vision_config.hidden_size
|
| 115 |
+
used_attribute = "vision_config.hidden_size"
|
| 116 |
+
else:
|
| 117 |
+
# If we can't determine from config, we'll need to run a dummy inference
|
| 118 |
+
raise AttributeError("Could not determine vector size from model configuration")
|
| 119 |
+
|
| 120 |
+
self._logger.info(f"Model {model_name} has embedding vector size: {vector_size}")
|
| 121 |
+
return {
|
| 122 |
+
"model_name": model_name,
|
| 123 |
+
"vector_size": vector_size,
|
| 124 |
+
"config_attribute_used": used_attribute
|
| 125 |
+
}
|
| 126 |
+
|
| 127 |
+
except Exception as e:
|
| 128 |
+
self._logger.error(f"Failed to get vector size for model '{model_name}': {str(e)}")
|
| 129 |
+
raise HTTPException(
|
| 130 |
+
status_code=404,
|
| 131 |
+
detail=f"Could not determine vector size for model '{model_name}': {str(e)}"
|
| 132 |
+
)
|
| 133 |
+
|
| 134 |
+
def _extract_embeddings(self, model_output, model_name: str) -> torch.Tensor:
|
| 135 |
+
"""Extract embeddings from model output with fallback strategies"""
|
| 136 |
+
|
| 137 |
+
# Try different embedding extraction methods in order of preference
|
| 138 |
+
|
| 139 |
+
# 1. Check for pooler_output (most common)
|
| 140 |
+
if hasattr(model_output, 'pooler_output') and model_output.pooler_output is not None:
|
| 141 |
+
self._logger.debug(f"Using pooler_output for {model_name}")
|
| 142 |
+
return model_output.pooler_output
|
| 143 |
+
|
| 144 |
+
# 2. Check for last_hidden_state and pool it
|
| 145 |
+
if hasattr(model_output, 'last_hidden_state') and model_output.last_hidden_state is not None:
|
| 146 |
+
self._logger.debug(f"Using pooled last_hidden_state for {model_name}")
|
| 147 |
+
# Mean pooling over sequence dimension
|
| 148 |
+
return model_output.last_hidden_state.mean(dim=1)
|
| 149 |
+
|
| 150 |
+
# 3. Check for image_embeds (CLIP-style models)
|
| 151 |
+
if hasattr(model_output, 'image_embeds') and model_output.image_embeds is not None:
|
| 152 |
+
self._logger.debug(f"Using image_embeds for {model_name}")
|
| 153 |
+
return model_output.image_embeds
|
| 154 |
+
|
| 155 |
+
# 4. Check for text_embeds (CLIP-style models)
|
| 156 |
+
if hasattr(model_output, 'text_embeds') and model_output.text_embeds is not None:
|
| 157 |
+
self._logger.debug(f"Using text_embeds for {model_name}")
|
| 158 |
+
return model_output.text_embeds
|
| 159 |
+
|
| 160 |
+
# 5. Fallback: try to use the output directly if it's a tensor
|
| 161 |
+
if isinstance(model_output, torch.Tensor):
|
| 162 |
+
self._logger.debug(f"Using direct tensor output for {model_name}")
|
| 163 |
+
return model_output
|
| 164 |
+
|
| 165 |
+
# 6. Last resort: check if output is a tuple and use the first element
|
| 166 |
+
if isinstance(model_output, tuple) and len(model_output) > 0:
|
| 167 |
+
self._logger.debug(f"Using first element of tuple output for {model_name}")
|
| 168 |
+
return model_output[0]
|
| 169 |
+
|
| 170 |
+
# If none of the above work, raise an error
|
| 171 |
+
raise HTTPException(
|
| 172 |
+
status_code=500,
|
| 173 |
+
detail=f"Could not extract embeddings from model output for {model_name}. "
|
| 174 |
+
f"Available attributes: {dir(model_output) if hasattr(model_output, '__dict__') else 'Unknown'}"
|
| 175 |
+
)
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
class ImageEmbeddingTaskService(BaseEmbeddingTaskService):
|
| 179 |
+
"""Service for generating image embeddings"""
|
| 180 |
+
|
| 181 |
+
def _decode_base64_image(self, base64_string: str) -> Image.Image:
|
| 182 |
+
"""Decode base64 string to PIL Image"""
|
| 183 |
+
try:
|
| 184 |
+
# Remove data URL prefix if present
|
| 185 |
+
if base64_string.startswith('data:image'):
|
| 186 |
+
base64_string = base64_string.split(',')[1]
|
| 187 |
+
|
| 188 |
+
image_data = base64.b64decode(base64_string)
|
| 189 |
+
image = Image.open(io.BytesIO(image_data))
|
| 190 |
+
|
| 191 |
+
# Convert to RGB if necessary
|
| 192 |
+
if image.mode != 'RGB':
|
| 193 |
+
image = image.convert('RGB')
|
| 194 |
+
|
| 195 |
+
return image
|
| 196 |
+
except Exception as e:
|
| 197 |
+
raise HTTPException(status_code=400, detail=f"Invalid image data: {str(e)}")
|
| 198 |
+
|
| 199 |
+
def _generate_image_embeddings(self, image: Image.Image, model, processor, model_name: str) -> list:
|
| 200 |
+
"""Generate embeddings for an image"""
|
| 201 |
+
device = self._get_device()
|
| 202 |
+
|
| 203 |
+
# Process the image
|
| 204 |
+
inputs = processor(images=image, return_tensors="pt", padding=True)
|
| 205 |
+
|
| 206 |
+
# Move inputs to the same device as the model
|
| 207 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 208 |
+
|
| 209 |
+
# Get the embeddings
|
| 210 |
+
with torch.no_grad():
|
| 211 |
+
# Try using specialized methods first for CLIP-like models
|
| 212 |
+
if hasattr(model, 'get_image_features'):
|
| 213 |
+
self._logger.debug(f"Using get_image_features for {model_name}")
|
| 214 |
+
embeddings = model.get_image_features(pixel_values=inputs.get('pixel_values'))
|
| 215 |
+
elif hasattr(model, 'vision_model'):
|
| 216 |
+
self._logger.debug(f"Using vision_model for {model_name}")
|
| 217 |
+
vision_outputs = model.vision_model(**inputs)
|
| 218 |
+
embeddings = self._extract_embeddings(vision_outputs, model_name)
|
| 219 |
+
else:
|
| 220 |
+
self._logger.debug(f"Using full model for {model_name}")
|
| 221 |
+
outputs = model(**inputs)
|
| 222 |
+
embeddings = self._extract_embeddings(outputs, model_name)
|
| 223 |
+
|
| 224 |
+
self._logger.info(f"Image embedding shape: {embeddings.shape}")
|
| 225 |
+
|
| 226 |
+
# Move back to CPU before converting to numpy
|
| 227 |
+
embeddings_array = embeddings.cpu().numpy()
|
| 228 |
+
|
| 229 |
+
return embeddings_array[0].tolist()
|
| 230 |
+
|
| 231 |
+
async def generate_embedding(self, request: Request, model_name: str):
|
| 232 |
+
"""Main method to generate image embeddings"""
|
| 233 |
+
embedding_request: EmbeddingRequest = await self.get_embedding_request(request)
|
| 234 |
+
|
| 235 |
+
self._logger.info(f"Generating image embedding for model: {model_name}")
|
| 236 |
+
|
| 237 |
+
# Load processor and model using auto-detection
|
| 238 |
+
processor = self._load_processor(model_name)
|
| 239 |
+
model = self._load_model(model_name, "_image")
|
| 240 |
+
|
| 241 |
+
# Decode image from base64
|
| 242 |
+
image = self._decode_base64_image(embedding_request.inputs)
|
| 243 |
+
|
| 244 |
+
try:
|
| 245 |
+
# Generate embeddings
|
| 246 |
+
embeddings = self._generate_image_embeddings(image, model, processor, model_name)
|
| 247 |
+
|
| 248 |
+
self._logger.info("Image embedding generation completed")
|
| 249 |
+
return {"embeddings": embeddings}
|
| 250 |
+
|
| 251 |
+
except Exception as e:
|
| 252 |
+
self._logger.error(f"Embedding generation failed for model '{model_name}': {str(e)}")
|
| 253 |
+
raise HTTPException(
|
| 254 |
+
status_code=500,
|
| 255 |
+
detail=f"Embedding generation failed: {str(e)}"
|
| 256 |
+
)
|
| 257 |
+
|
| 258 |
+
async def generate_embedding_from_upload(self, uploaded_file, model_name: str):
|
| 259 |
+
"""Generate image embeddings from uploaded file"""
|
| 260 |
+
from fastapi import UploadFile
|
| 261 |
+
|
| 262 |
+
self._logger.info(f"Generating image embedding from uploaded file for model: {model_name}")
|
| 263 |
+
|
| 264 |
+
# Validate file type
|
| 265 |
+
if not uploaded_file.content_type.startswith('image/'):
|
| 266 |
+
raise HTTPException(
|
| 267 |
+
status_code=400,
|
| 268 |
+
detail=f"Invalid file type: {uploaded_file.content_type}. Only image files are supported."
|
| 269 |
+
)
|
| 270 |
+
|
| 271 |
+
try:
|
| 272 |
+
# Read file content
|
| 273 |
+
file_content = await uploaded_file.read()
|
| 274 |
+
|
| 275 |
+
# Convert to PIL Image
|
| 276 |
+
image = Image.open(io.BytesIO(file_content)).convert('RGB')
|
| 277 |
+
|
| 278 |
+
# Load processor and model using auto-detection
|
| 279 |
+
processor = self._load_processor(model_name)
|
| 280 |
+
model = self._load_model(model_name, "_image")
|
| 281 |
+
|
| 282 |
+
# Generate embeddings
|
| 283 |
+
embeddings = self._generate_image_embeddings(image, model, processor, model_name)
|
| 284 |
+
|
| 285 |
+
self._logger.info("Image embedding generation from upload completed")
|
| 286 |
+
return {"embeddings": embeddings}
|
| 287 |
+
|
| 288 |
+
except Exception as e:
|
| 289 |
+
self._logger.error(f"Embedding generation from upload failed for model '{model_name}': {str(e)}")
|
| 290 |
+
raise HTTPException(
|
| 291 |
+
status_code=500,
|
| 292 |
+
detail=f"Embedding generation from upload failed: {str(e)}"
|
| 293 |
+
)
|
| 294 |
+
|
| 295 |
+
|
| 296 |
+
class TextEmbeddingTaskService(BaseEmbeddingTaskService):
|
| 297 |
+
"""Service for generating text embeddings"""
|
| 298 |
+
|
| 299 |
+
def _generate_text_embeddings(self, text: str, model, processor, model_name: str) -> list:
|
| 300 |
+
"""Generate embeddings for text"""
|
| 301 |
+
device = self._get_device()
|
| 302 |
+
|
| 303 |
+
# Process the text
|
| 304 |
+
inputs = processor(text=[text], return_tensors="pt", padding=True, truncation=True)
|
| 305 |
+
|
| 306 |
+
# Move inputs to the same device as the model
|
| 307 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 308 |
+
|
| 309 |
+
# Get the embeddings
|
| 310 |
+
with torch.no_grad():
|
| 311 |
+
# Try using specialized methods first for CLIP-like models
|
| 312 |
+
if hasattr(model, 'get_text_features'):
|
| 313 |
+
self._logger.debug(f"Using get_text_features for {model_name}")
|
| 314 |
+
embeddings = model.get_text_features(
|
| 315 |
+
input_ids=inputs.get('input_ids'),
|
| 316 |
+
attention_mask=inputs.get('attention_mask')
|
| 317 |
+
)
|
| 318 |
+
elif hasattr(model, 'text_model'):
|
| 319 |
+
self._logger.debug(f"Using text_model for {model_name}")
|
| 320 |
+
text_outputs = model.text_model(**inputs)
|
| 321 |
+
embeddings = self._extract_embeddings(text_outputs, model_name)
|
| 322 |
+
else:
|
| 323 |
+
self._logger.debug(f"Using full model for {model_name}")
|
| 324 |
+
outputs = model(**inputs)
|
| 325 |
+
embeddings = self._extract_embeddings(outputs, model_name)
|
| 326 |
+
|
| 327 |
+
self._logger.info(f"Text embedding shape: {embeddings.shape}")
|
| 328 |
+
|
| 329 |
+
# Move back to CPU before converting to numpy
|
| 330 |
+
embeddings_array = embeddings.cpu().numpy()
|
| 331 |
+
|
| 332 |
+
return embeddings_array[0].tolist()
|
| 333 |
+
|
| 334 |
+
async def generate_embedding(self, request: Request, model_name: str):
|
| 335 |
+
"""Main method to generate text embeddings"""
|
| 336 |
+
embedding_request: EmbeddingRequest = await self.get_embedding_request(request)
|
| 337 |
+
|
| 338 |
+
self._logger.info(f"Generating text embedding for: {embedding_request.inputs[:50]}...")
|
| 339 |
+
|
| 340 |
+
# Load processor and model using auto-detection
|
| 341 |
+
processor = self._load_processor(model_name)
|
| 342 |
+
model = self._load_model(model_name, "_text")
|
| 343 |
+
|
| 344 |
+
try:
|
| 345 |
+
# Generate embeddings
|
| 346 |
+
embeddings = self._generate_text_embeddings(embedding_request.inputs, model, processor, model_name)
|
| 347 |
+
|
| 348 |
+
self._logger.info("Text embedding generation completed")
|
| 349 |
+
return {"embeddings": embeddings}
|
| 350 |
+
|
| 351 |
+
except Exception as e:
|
| 352 |
+
self._logger.error(f"Embedding generation failed for model '{model_name}': {str(e)}")
|
| 353 |
+
raise HTTPException(
|
| 354 |
+
status_code=500,
|
| 355 |
+
detail=f"Embedding generation failed: {str(e)}"
|
| 356 |
+
)
|
src/main.py
CHANGED
|
@@ -10,13 +10,14 @@
|
|
| 10 |
|
| 11 |
import torch
|
| 12 |
|
| 13 |
-
from fastapi import FastAPI, Path, Request
|
| 14 |
import logging
|
| 15 |
import sys
|
| 16 |
|
| 17 |
from .translation_task import TranslationTaskService
|
| 18 |
from .classification import ClassificationTaskService
|
| 19 |
from .text_to_image import TextToImageTaskService
|
|
|
|
| 20 |
|
| 21 |
app = FastAPI(
|
| 22 |
title="Pimcore Local Inference Service",
|
|
@@ -294,3 +295,194 @@ async def image_to_text(
|
|
| 294 |
model_name = model_name.rstrip("/")
|
| 295 |
imageToTextTask = TextToImageTaskService(logger)
|
| 296 |
return await imageToTextTask.extract(request, model_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
import torch
|
| 12 |
|
| 13 |
+
from fastapi import FastAPI, Path, Request, File, UploadFile
|
| 14 |
import logging
|
| 15 |
import sys
|
| 16 |
|
| 17 |
from .translation_task import TranslationTaskService
|
| 18 |
from .classification import ClassificationTaskService
|
| 19 |
from .text_to_image import TextToImageTaskService
|
| 20 |
+
from .embeddings import ImageEmbeddingTaskService, TextEmbeddingTaskService
|
| 21 |
|
| 22 |
app = FastAPI(
|
| 23 |
title="Pimcore Local Inference Service",
|
|
|
|
| 295 |
model_name = model_name.rstrip("/")
|
| 296 |
imageToTextTask = TextToImageTaskService(logger)
|
| 297 |
return await imageToTextTask.extract(request, model_name)
|
| 298 |
+
|
| 299 |
+
|
| 300 |
+
# =========================
|
| 301 |
+
# Image Embedding Task
|
| 302 |
+
# =========================
|
| 303 |
+
@app.post(
|
| 304 |
+
"/image-embedding/{model_name:path}",
|
| 305 |
+
openapi_extra={
|
| 306 |
+
"requestBody": {
|
| 307 |
+
"content": {
|
| 308 |
+
"application/json": {
|
| 309 |
+
"example": {
|
| 310 |
+
"inputs": "base64_encoded_image_string"
|
| 311 |
+
}
|
| 312 |
+
}
|
| 313 |
+
}
|
| 314 |
+
}
|
| 315 |
+
}
|
| 316 |
+
)
|
| 317 |
+
async def image_embedding(
|
| 318 |
+
request: Request,
|
| 319 |
+
model_name: str = Path(
|
| 320 |
+
...,
|
| 321 |
+
description="The name of the image embedding model. Supported models include: google/siglip-so400m-patch14-384, openai/clip-vit-large-patch14, openai/clip-vit-base-patch16, laion/CLIP-ViT-bigG-14-laion2B-39B-b160k, Salesforce/blip-itm-large-flickr",
|
| 322 |
+
example="google/siglip-so400m-patch14-384"
|
| 323 |
+
)
|
| 324 |
+
):
|
| 325 |
+
"""
|
| 326 |
+
Generate embedding vectors for image data.
|
| 327 |
+
|
| 328 |
+
The service supports multiple model types including SigLIP, CLIP, and BLIP models.
|
| 329 |
+
Returns a dense vector representation of the input image.
|
| 330 |
+
|
| 331 |
+
Returns:
|
| 332 |
+
list: The embedding vector as a list of float values.
|
| 333 |
+
"""
|
| 334 |
+
|
| 335 |
+
model_name = model_name.rstrip("/")
|
| 336 |
+
imageEmbeddingTask = ImageEmbeddingTaskService(logger)
|
| 337 |
+
return await imageEmbeddingTask.generate_embedding(request, model_name)
|
| 338 |
+
|
| 339 |
+
|
| 340 |
+
# =========================
|
| 341 |
+
# Image Embedding Upload Task (Development/Testing)
|
| 342 |
+
# =========================
|
| 343 |
+
@app.post(
|
| 344 |
+
"/image-embedding-upload/{model_name:path}",
|
| 345 |
+
openapi_extra={
|
| 346 |
+
"requestBody": {
|
| 347 |
+
"content": {
|
| 348 |
+
"multipart/form-data": {
|
| 349 |
+
"schema": {
|
| 350 |
+
"type": "object",
|
| 351 |
+
"properties": {
|
| 352 |
+
"image": {
|
| 353 |
+
"type": "string",
|
| 354 |
+
"format": "binary",
|
| 355 |
+
"description": "Image file to upload for embedding generation"
|
| 356 |
+
}
|
| 357 |
+
},
|
| 358 |
+
"required": ["image"]
|
| 359 |
+
}
|
| 360 |
+
}
|
| 361 |
+
}
|
| 362 |
+
},
|
| 363 |
+
"responses": {
|
| 364 |
+
"200": {
|
| 365 |
+
"description": "Image embedding vector",
|
| 366 |
+
"content": {
|
| 367 |
+
"application/json": {
|
| 368 |
+
"example": {
|
| 369 |
+
"embeddings": [0.1, -0.2, 0.3, "..."]
|
| 370 |
+
}
|
| 371 |
+
}
|
| 372 |
+
}
|
| 373 |
+
}
|
| 374 |
+
}
|
| 375 |
+
}
|
| 376 |
+
)
|
| 377 |
+
async def image_embedding_upload(
|
| 378 |
+
image: UploadFile = File(..., description="Image file to generate embeddings for"),
|
| 379 |
+
model_name: str = Path(
|
| 380 |
+
...,
|
| 381 |
+
description="The name of the image embedding model. Supported models include: google/siglip-so400m-patch14-384, openai/clip-vit-large-patch14, openai/clip-vit-base-patch16, laion/CLIP-ViT-bigG-14-laion2B-39B-b160k, Salesforce/blip-itm-large-flickr",
|
| 382 |
+
example="google/siglip-so400m-patch14-384"
|
| 383 |
+
)
|
| 384 |
+
):
|
| 385 |
+
"""
|
| 386 |
+
Generate embedding vectors for uploaded image data (Development/Testing endpoint).
|
| 387 |
+
|
| 388 |
+
This endpoint allows you to upload an image file directly through the Swagger UI
|
| 389 |
+
for development and testing purposes. The image is processed and converted to
|
| 390 |
+
embedding vectors using the specified model.
|
| 391 |
+
|
| 392 |
+
Supported formats: JPEG, PNG, GIF, BMP, TIFF
|
| 393 |
+
|
| 394 |
+
The service supports multiple model types including SigLIP, CLIP, and BLIP models.
|
| 395 |
+
Returns a dense vector representation of the uploaded image.
|
| 396 |
+
|
| 397 |
+
Returns:
|
| 398 |
+
dict: The embedding vector as a list of float values.
|
| 399 |
+
"""
|
| 400 |
+
|
| 401 |
+
model_name = model_name.rstrip("/")
|
| 402 |
+
imageEmbeddingTask = ImageEmbeddingTaskService(logger)
|
| 403 |
+
return await imageEmbeddingTask.generate_embedding_from_upload(image, model_name)
|
| 404 |
+
|
| 405 |
+
|
| 406 |
+
# =========================
|
| 407 |
+
# Text Embedding Task
|
| 408 |
+
# =========================
|
| 409 |
+
@app.post(
|
| 410 |
+
"/text-embedding/{model_name:path}",
|
| 411 |
+
openapi_extra={
|
| 412 |
+
"requestBody": {
|
| 413 |
+
"content": {
|
| 414 |
+
"application/json": {
|
| 415 |
+
"example": {
|
| 416 |
+
"inputs": "text to embed"
|
| 417 |
+
}
|
| 418 |
+
}
|
| 419 |
+
}
|
| 420 |
+
}
|
| 421 |
+
}
|
| 422 |
+
)
|
| 423 |
+
async def text_embedding(
|
| 424 |
+
request: Request,
|
| 425 |
+
model_name: str = Path(
|
| 426 |
+
...,
|
| 427 |
+
description="The name of the text embedding model. Supported models include: google/siglip-so400m-patch14-384, openai/clip-vit-large-patch14, openai/clip-vit-base-patch16, laion/CLIP-ViT-bigG-14-laion2B-39B-b160k, Salesforce/blip-itm-large-flickr",
|
| 428 |
+
example="google/siglip-so400m-patch14-384"
|
| 429 |
+
)
|
| 430 |
+
):
|
| 431 |
+
"""
|
| 432 |
+
Generate embedding vectors for text data.
|
| 433 |
+
|
| 434 |
+
The service supports multiple model types including SigLIP, CLIP, and BLIP models.
|
| 435 |
+
Returns a dense vector representation of the input text.
|
| 436 |
+
|
| 437 |
+
Returns:
|
| 438 |
+
list: The embedding vector as a list of float values.
|
| 439 |
+
"""
|
| 440 |
+
|
| 441 |
+
model_name = model_name.rstrip("/")
|
| 442 |
+
textEmbeddingTask = TextEmbeddingTaskService(logger)
|
| 443 |
+
return await textEmbeddingTask.generate_embedding(request, model_name)
|
| 444 |
+
|
| 445 |
+
|
| 446 |
+
# =========================
|
| 447 |
+
# Embedding Vector Size
|
| 448 |
+
# =========================
|
| 449 |
+
@app.get(
|
| 450 |
+
"/embedding-vector-size/{model_name:path}",
|
| 451 |
+
openapi_extra={
|
| 452 |
+
"responses": {
|
| 453 |
+
"200": {
|
| 454 |
+
"description": "Vector size information",
|
| 455 |
+
"content": {
|
| 456 |
+
"application/json": {
|
| 457 |
+
"example": {
|
| 458 |
+
"model_name": "google/siglip-so400m-patch14-384",
|
| 459 |
+
"vector_size": 1152,
|
| 460 |
+
"config_attribute_used": "hidden_size"
|
| 461 |
+
}
|
| 462 |
+
}
|
| 463 |
+
}
|
| 464 |
+
}
|
| 465 |
+
}
|
| 466 |
+
}
|
| 467 |
+
)
|
| 468 |
+
async def embedding_vector_size(
|
| 469 |
+
model_name: str = Path(
|
| 470 |
+
...,
|
| 471 |
+
description="The name of the embedding model. Supported models include: google/siglip-so400m-patch14-384, openai/clip-vit-large-patch14, openai/clip-vit-base-patch16, laion/CLIP-ViT-bigG-14-laion2B-39B-b160k, Salesforce/blip-itm-large-flickr",
|
| 472 |
+
example="google/siglip-so400m-patch14-384"
|
| 473 |
+
)
|
| 474 |
+
):
|
| 475 |
+
"""
|
| 476 |
+
Get the vector size of embeddings for a given model.
|
| 477 |
+
|
| 478 |
+
This endpoint returns the dimensionality of the embedding vectors that the model produces.
|
| 479 |
+
Useful for understanding the output format before generating embeddings.
|
| 480 |
+
|
| 481 |
+
Returns:
|
| 482 |
+
dict: Information about the vector size including model name, vector size, and configuration attribute used.
|
| 483 |
+
"""
|
| 484 |
+
|
| 485 |
+
model_name = model_name.rstrip("/")
|
| 486 |
+
# We can use either ImageEmbeddingTaskService or TextEmbeddingTaskService as they inherit from the same base class
|
| 487 |
+
embeddingTask = ImageEmbeddingTaskService(logger)
|
| 488 |
+
return await embeddingTask.get_embedding_vector_size(model_name)
|