from typing import Tuple, Callable, Optional from collections import OrderedDict import gym import torch import numpy as np import ray from ray.rllib.env.base_env import BaseEnv, ASYNC_RESET_RETURN from ray.rllib.utils.annotations import PublicAPI from ray.rllib.utils.typing import MultiEnvDict, EnvType, EnvID, MultiAgentDict from stable_baselines3.common.vec_env.base_vec_env import VecEnvObs from stable_baselines3.common.vec_env.util import obs_space_info, dict_to_obs from MyDummyVecEnv import MyDummyVecEnv @PublicAPI class MyRemoteVectorEnv(BaseEnv): """Vector env that executes envs in remote workers. This provides dynamic batching of inference as observations are returned from the remote simulator actors. Both single and multi-agent child envs are supported, and envs can be stepped synchronously or async. You shouldn't need to instantiate this class directly. It's automatically inserted when you use the `remote_worker_envs` option for Trainers. """ @property def observation_space(self): return self._observation_space def __init__(self, make_env: Callable[[int], EnvType], num_workers: int, env_per_worker: int, observation_space: Optional[gym.spaces.Space], device: torch.device): self.make_local_env = make_env self.num_workers = num_workers self.env_per_worker = env_per_worker self.num_envs = num_workers * env_per_worker self.poll_timeout = None self.actors = None # lazy init self.pending = None # lazy init self.observation_space = observation_space self.keys, shapes, dtypes = obs_space_info(self.observation_space) self.device = device self.buf_obs = OrderedDict( [(k, torch.zeros((self.num_envs,) + tuple(shapes[k]), dtype=torch.float, device=self.device)) for k in self.keys]) self.buf_dones = np.zeros((self.num_envs,), dtype=bool) self.buf_rews = np.zeros((self.num_envs,), dtype=np.float32) self.buf_infos = [{} for _ in range(self.num_envs)] def _save_obs(self, env_idx: int, obs: VecEnvObs) -> None: for key in self.keys: self.buf_obs[key][env_idx * self.env_per_worker: (env_idx + 1) * self.env_per_worker] = torch.from_numpy(obs[key]).to(self.device, non_blocking=True) def poll(self) -> Tuple[MultiEnvDict, MultiEnvDict, MultiEnvDict, MultiEnvDict, MultiEnvDict]: if self.actors is None: def make_remote_env(i): return _RemoteSingleAgentEnv.remote(self.make_local_env, i, self.env_per_worker) self.actors = [make_remote_env(i) for i in range(self.num_workers)] if self.pending is None: self.pending = {a.reset.remote(): a for a in self.actors} # each keyed by env_id in [0, num_remote_envs) ready = [] # Wait for at least 1 env to be ready here while not ready: ready, _ = ray.wait( list(self.pending), num_returns=len(self.pending), timeout=self.poll_timeout) for obj_ref in ready: actor = self.pending.pop(obj_ref) env_id = self.actors.index(actor) ob, rew, done, info = ray.get(obj_ref) self._save_obs(env_id, ob) self.buf_rews[env_id * self.env_per_worker: (env_id + 1) * self.env_per_worker] = rew self.buf_dones[env_id * self.env_per_worker: (env_id + 1) * self.env_per_worker] = done self.buf_infos[env_id * self.env_per_worker: (env_id + 1) * self.env_per_worker] = info return (self._obs_from_buf(), self.buf_rews, self.buf_dones, self.buf_infos) def _obs_from_buf(self) -> VecEnvObs: return dict_to_obs(self.observation_space, self.buf_obs) @PublicAPI def send_actions(self, action_list) -> None: for worker_id in range(self.num_workers): actions = action_list[worker_id * self.env_per_worker: (worker_id + 1) * self.env_per_worker] actor = self.actors[worker_id] obj_ref = actor.step.remote(actions) self.pending[obj_ref] = actor @PublicAPI def try_reset(self, env_id: Optional[EnvID] = None) -> Optional[MultiAgentDict]: actor = self.actors[env_id] obj_ref = actor.reset.remote() self.pending[obj_ref] = actor return ASYNC_RESET_RETURN @PublicAPI def stop(self) -> None: if self.actors is not None: for actor in self.actors: actor.__ray_terminate__.remote() @observation_space.setter def observation_space(self, value): self._observation_space = value @ray.remote(num_cpus=1) class _RemoteSingleAgentEnv: """Wrapper class for making a gym env a remote actor.""" def __init__(self, make_env, i, env_per_worker): self.env = MyDummyVecEnv([lambda: make_env((i * env_per_worker) + k) for k in range(env_per_worker)]) def reset(self): return self.env.reset(), 0, False, {} def step(self, actions): return self.env.step(actions)