from typing import Optional, List, Union, Sequence, Type, Any import gym import numpy as np from ray.rllib import BaseEnv from stable_baselines3.common.vec_env import VecEnv from stable_baselines3.common.vec_env.base_vec_env import VecEnvIndices, VecEnvStepReturn, VecEnvObs from MyRemoteVectorEnv import MyRemoteVectorEnv class WrapperRay(VecEnv): def __init__(self, make_env, num_workers, per_worker_env, device): self.one_env = make_env(0) self.remote: BaseEnv = MyRemoteVectorEnv(make_env, num_workers, per_worker_env, self.one_env.observation_space, device) super(WrapperRay, self).__init__(num_workers * per_worker_env, self.one_env.observation_space, self.one_env.action_space) def reset(self) -> VecEnvObs: return self.remote.poll()[0] def step_async(self, actions: np.ndarray) -> None: self.remote.send_actions(actions) def step_wait(self) -> VecEnvStepReturn: return self.remote.poll() def close(self) -> None: self.remote.stop() def get_attr(self, attr_name: str, indices: VecEnvIndices = None) -> List[Any]: pass def set_attr(self, attr_name: str, value: Any, indices: VecEnvIndices = None) -> None: pass def env_method(self, method_name: str, *method_args, indices: VecEnvIndices = None, **method_kwargs) -> List[Any]: pass def env_is_wrapped(self, wrapper_class: Type[gym.Wrapper], indices: VecEnvIndices = None) -> List[bool]: pass def get_images(self) -> Sequence[np.ndarray]: pass def seed(self, seed: Optional[int] = None) -> List[Union[None, int]]: pass