File size: 1,636 Bytes
d746b98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
from typing import Optional, List, Union, Sequence, Type, Any

import gym
import numpy as np
from ray.rllib import BaseEnv
from stable_baselines3.common.vec_env import VecEnv
from stable_baselines3.common.vec_env.base_vec_env import VecEnvIndices, VecEnvStepReturn, VecEnvObs

from MyRemoteVectorEnv import MyRemoteVectorEnv


class WrapperRay(VecEnv):

    def __init__(self, make_env, num_workers, per_worker_env, device):
        self.one_env = make_env(0)
        self.remote: BaseEnv = MyRemoteVectorEnv(make_env, num_workers, per_worker_env, self.one_env.observation_space, device)
        super(WrapperRay, self).__init__(num_workers * per_worker_env, self.one_env.observation_space, self.one_env.action_space)

    def reset(self) -> VecEnvObs:
        return self.remote.poll()[0]

    def step_async(self, actions: np.ndarray) -> None:
        self.remote.send_actions(actions)

    def step_wait(self) -> VecEnvStepReturn:
        return self.remote.poll()

    def close(self) -> None:
        self.remote.stop()

    def get_attr(self, attr_name: str, indices: VecEnvIndices = None) -> List[Any]:
        pass

    def set_attr(self, attr_name: str, value: Any, indices: VecEnvIndices = None) -> None:
        pass

    def env_method(self, method_name: str, *method_args, indices: VecEnvIndices = None, **method_kwargs) -> List[Any]:
        pass

    def env_is_wrapped(self, wrapper_class: Type[gym.Wrapper], indices: VecEnvIndices = None) -> List[bool]:
        pass

    def get_images(self) -> Sequence[np.ndarray]:
        pass

    def seed(self, seed: Optional[int] = None) -> List[Union[None, int]]:
        pass