Commit
·
b24b127
1
Parent(s):
0b0cce3
Update files/functions.py
Browse files- files/functions.py +57 -45
files/functions.py
CHANGED
@@ -98,7 +98,7 @@ from huggingface_hub import hf_hub_download
|
|
98 |
files = ["example.pdf", "blank.pdf", "blank.png", "languages_iso.csv", "languages_tesseract.csv", "wo_content.png"]
|
99 |
for file_name in files:
|
100 |
path_to_file = hf_hub_download(
|
101 |
-
repo_id = "pierreguillou/Inference-APP-Document-Understanding-at-
|
102 |
filename = "files/" + file_name,
|
103 |
repo_type = "space"
|
104 |
)
|
@@ -140,10 +140,7 @@ langdetect2Tesseract = {v:k for k,v in Tesseract2langdetect.items()}
|
|
140 |
import torch
|
141 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
142 |
|
143 |
-
#
|
144 |
-
from transformers import LayoutLMv2ForTokenClassification
|
145 |
-
|
146 |
-
model_id = "pierreguillou/layout-xlm-base-finetuned-with-DocLayNet-base-at-linelevel-ml384"
|
147 |
|
148 |
model = LayoutLMv2ForTokenClassification.from_pretrained(model_id);
|
149 |
model.to(device);
|
@@ -154,7 +151,6 @@ feature_extractor = LayoutLMv2FeatureExtractor(apply_ocr=False)
|
|
154 |
|
155 |
# tokenizer
|
156 |
from transformers import AutoTokenizer
|
157 |
-
tokenizer_id = "xlm-roberta-base"
|
158 |
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
|
159 |
|
160 |
# get labels
|
@@ -167,7 +163,7 @@ num_labels = len(id2label)
|
|
167 |
# get text and bounding boxes from an image
|
168 |
# https://stackoverflow.com/questions/61347755/how-can-i-get-line-coordinates-that-readed-by-tesseract
|
169 |
# https://medium.com/geekculture/tesseract-ocr-understanding-the-contents-of-documents-beyond-their-text-a98704b7c655
|
170 |
-
def
|
171 |
|
172 |
data = {}
|
173 |
for i in range(len(results['line_num'])):
|
@@ -210,43 +206,55 @@ def get_data(results, factor, conf_min=0):
|
|
210 |
par_idx += 1
|
211 |
|
212 |
# get lines of texts, grouped by paragraph
|
213 |
-
|
214 |
row_indexes = list()
|
|
|
|
|
215 |
row_index = 0
|
216 |
for _,par in par_data.items():
|
217 |
count_lines = 0
|
|
|
218 |
for _,line in par.items():
|
219 |
if count_lines == 0: row_indexes.append(row_index)
|
220 |
line_text = ' '.join([item[0] for item in line])
|
221 |
-
|
|
|
222 |
count_lines += 1
|
223 |
row_index += 1
|
224 |
# lines.append("\n")
|
225 |
row_index += 1
|
|
|
|
|
226 |
# lines = lines[:-1]
|
227 |
|
228 |
# get paragraphes boxes (par_boxes)
|
229 |
# get lines boxes (line_boxes)
|
230 |
par_boxes = list()
|
231 |
par_idx = 1
|
232 |
-
line_boxes = list()
|
233 |
line_idx = 1
|
234 |
for _, par in par_data.items():
|
235 |
xmins, ymins, xmaxs, ymaxs = list(), list(), list(), list()
|
|
|
|
|
236 |
for _, line in par.items():
|
237 |
xmin, ymin = line[0][1], line[0][2]
|
238 |
xmax, ymax = (line[-1][1] + line[-1][3]), (line[-1][2] + line[-1][4])
|
239 |
line_boxes.append([int(xmin/factor), int(ymin/factor), int(xmax/factor), int(ymax/factor)])
|
|
|
240 |
xmins.append(xmin)
|
241 |
ymins.append(ymin)
|
242 |
xmaxs.append(xmax)
|
243 |
ymaxs.append(ymax)
|
244 |
line_idx += 1
|
|
|
245 |
xmin, ymin, xmax, ymax = min(xmins), min(ymins), max(xmaxs), max(ymaxs)
|
246 |
-
|
|
|
|
|
247 |
par_idx += 1
|
248 |
|
249 |
-
return
|
250 |
|
251 |
# rescale image to get 300dpi
|
252 |
def set_image_dpi_resize(image):
|
@@ -375,7 +383,7 @@ def sort_data_wo_labels(bboxes, texts):
|
|
375 |
sorted_texts = np.array(texts, dtype=object)[sorted_bboxes_indexes].tolist()
|
376 |
|
377 |
return sorted_bboxes, sorted_texts
|
378 |
-
|
379 |
## PDF processing
|
380 |
|
381 |
# get filename and images of PDF pages
|
@@ -419,8 +427,8 @@ def extraction_data_from_image(images):
|
|
419 |
|
420 |
# https://pyimagesearch.com/2021/11/15/tesseract-page-segmentation-modes-psms-explained-how-to-improve-your-ocr-accuracy/
|
421 |
custom_config = r'--oem 3 --psm 3 -l eng' # default config PyTesseract: --oem 3 --psm 3 -l eng+deu+fra+jpn+por+spa+rus+hin+chi_sim
|
422 |
-
results,
|
423 |
-
images_ids_list,
|
424 |
|
425 |
try:
|
426 |
for i,image in enumerate(images):
|
@@ -432,7 +440,7 @@ def extraction_data_from_image(images):
|
|
432 |
img = np.array(img, dtype='uint8') # convert PIL to cv2
|
433 |
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # gray scale image
|
434 |
ret,img = cv2.threshold(img,127,255,cv2.THRESH_BINARY)
|
435 |
-
|
436 |
# OCR PyTesseract | get langs of page
|
437 |
txt = pytesseract.image_to_string(img, config=custom_config)
|
438 |
txt = txt.strip().lower()
|
@@ -455,38 +463,43 @@ def extraction_data_from_image(images):
|
|
455 |
# get image pixels
|
456 |
images_pixels[i] = feature_extractor(images[i], return_tensors="pt").pixel_values
|
457 |
|
458 |
-
|
459 |
-
|
|
|
|
|
460 |
par_boxes_list.append(par_boxes[i])
|
461 |
line_boxes_list.append(line_boxes[i])
|
|
|
462 |
images_ids_list.append(i)
|
463 |
images_pixels_list.append(images_pixels[i])
|
464 |
images_list.append(images[i])
|
465 |
page_no_list.append(i)
|
466 |
-
num_pages_list.append(num_imgs)
|
467 |
|
468 |
except:
|
469 |
print(f"There was an error within the extraction of PDF text by the OCR!")
|
470 |
else:
|
471 |
from datasets import Dataset
|
472 |
-
dataset = Dataset.from_dict({"images_ids": images_ids_list, "images": images_list, "images_pixels": images_pixels_list, "page_no": page_no_list, "num_pages": num_pages_list, "
|
473 |
|
|
|
474 |
# print(f"The text data was successfully extracted by the OCR!")
|
475 |
|
476 |
-
return dataset,
|
477 |
|
478 |
## Inference
|
479 |
|
480 |
-
def
|
481 |
|
482 |
images_ids_list, chunks_ids_list, input_ids_list, attention_mask_list, bb_list, images_pixels_list = list(), list(), list(), list(), list(), list()
|
483 |
|
484 |
-
# get batch
|
|
|
485 |
batch_images_ids = example["images_ids"]
|
486 |
batch_images = example["images"]
|
487 |
batch_images_pixels = example["images_pixels"]
|
488 |
-
|
489 |
-
|
490 |
batch_images_size = [image.size for image in batch_images]
|
491 |
|
492 |
batch_width, batch_height = [image_size[0] for image_size in batch_images_size], [image_size[1] for image_size in batch_images_size]
|
@@ -496,38 +509,37 @@ def prepare_inference_features(example, cls_box = cls_box, sep_box = sep_box):
|
|
496 |
batch_images_ids = [batch_images_ids]
|
497 |
batch_images = [batch_images]
|
498 |
batch_images_pixels = [batch_images_pixels]
|
499 |
-
|
500 |
-
|
501 |
batch_width, batch_height = [batch_width], [batch_height]
|
502 |
|
503 |
# process all images of the batch
|
504 |
-
for num_batch, (image_id, image_pixels, boxes,
|
505 |
tokens_list = []
|
506 |
bboxes_list = []
|
507 |
|
508 |
# add a dimension if only on image
|
509 |
-
if not isinstance(
|
510 |
-
|
511 |
|
512 |
# convert boxes to original
|
513 |
-
|
514 |
|
515 |
# sort boxes with texts
|
516 |
# we want sorted lists from top to bottom of the image
|
517 |
-
boxes,
|
518 |
|
519 |
count = 0
|
520 |
-
for box,
|
521 |
-
|
522 |
-
|
523 |
-
tokens_list.extend(
|
524 |
-
|
525 |
-
bboxes_list.extend([box] * num_tokens) # number of boxes must be the same as the number of tokens
|
526 |
|
527 |
# use of return_overflowing_tokens=True / stride=doc_stride
|
528 |
# to get parts of image with overlap
|
529 |
# source: https://huggingface.co/course/chapter6/3b?fw=tf#handling-long-contexts
|
530 |
-
encodings = tokenizer(" ".join(
|
531 |
truncation=True,
|
532 |
padding="max_length",
|
533 |
max_length=max_length,
|
@@ -654,7 +666,7 @@ def predictions_token_level(images, custom_encoded_dataset):
|
|
654 |
from functools import reduce
|
655 |
|
656 |
# Get predictions (line level)
|
657 |
-
def
|
658 |
|
659 |
ten_probs_dict, ten_input_ids_dict, ten_bboxes_dict = dict(), dict(), dict()
|
660 |
bboxes_list_dict, input_ids_dict_dict, probs_dict_dict, df = dict(), dict(), dict(), dict()
|
@@ -719,7 +731,7 @@ def predictions_line_level(dataset, outputs, images_ids_list, chunk_ids, input_i
|
|
719 |
input_ids_dict[str(bbox)].append(input_id)
|
720 |
probs_dict[str(bbox)].append(probs)
|
721 |
bbox_prev = bbox
|
722 |
-
|
723 |
probs_bbox = dict()
|
724 |
for i,bbox in enumerate(bboxes_list):
|
725 |
probs = probs_dict[str(bbox)]
|
@@ -832,7 +844,7 @@ def get_encoded_chunk_inference(index_chunk=None):
|
|
832 |
return image, df, num_tokens, page_no, num_pages
|
833 |
|
834 |
# display chunk of PDF image and its data
|
835 |
-
def
|
836 |
|
837 |
# get image and image data
|
838 |
image, df, num_tokens, page_no, num_pages = get_encoded_chunk_inference(index_chunk=index_chunk)
|
@@ -845,14 +857,14 @@ def display_chunk_lines_inference(index_chunk=None):
|
|
845 |
print(f'Chunk ({num_tokens} tokens) of the PDF (page: {page_no+1} / {num_pages})\n')
|
846 |
|
847 |
# display image with bounding boxes
|
848 |
-
print(">> PDF image with bounding boxes of
|
849 |
draw = ImageDraw.Draw(image)
|
850 |
|
851 |
labels = list()
|
852 |
for box, text in zip(bboxes, texts):
|
853 |
color = "red"
|
854 |
draw.rectangle(box, outline=color)
|
855 |
-
|
856 |
# resize image to original
|
857 |
width, height = image.size
|
858 |
image = image.resize((int(0.5*width), int(0.5*height)))
|
@@ -863,7 +875,7 @@ def display_chunk_lines_inference(index_chunk=None):
|
|
863 |
cv2.waitKey(0)
|
864 |
|
865 |
# display image dataframe
|
866 |
-
print("\n>> Dataframe of annotated
|
867 |
cols = ["texts", "bboxes"]
|
868 |
df = df[cols]
|
869 |
display(df)
|
|
|
98 |
files = ["example.pdf", "blank.pdf", "blank.png", "languages_iso.csv", "languages_tesseract.csv", "wo_content.png"]
|
99 |
for file_name in files:
|
100 |
path_to_file = hf_hub_download(
|
101 |
+
repo_id = "pierreguillou/Inference-APP-Document-Understanding-at-paragraphlevel-v2",
|
102 |
filename = "files/" + file_name,
|
103 |
repo_type = "space"
|
104 |
)
|
|
|
140 |
import torch
|
141 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
142 |
|
143 |
+
from transformers import LayoutLMv2ForTokenClassification # LayoutXLMTokenizerFast,
|
|
|
|
|
|
|
144 |
|
145 |
model = LayoutLMv2ForTokenClassification.from_pretrained(model_id);
|
146 |
model.to(device);
|
|
|
151 |
|
152 |
# tokenizer
|
153 |
from transformers import AutoTokenizer
|
|
|
154 |
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
|
155 |
|
156 |
# get labels
|
|
|
163 |
# get text and bounding boxes from an image
|
164 |
# https://stackoverflow.com/questions/61347755/how-can-i-get-line-coordinates-that-readed-by-tesseract
|
165 |
# https://medium.com/geekculture/tesseract-ocr-understanding-the-contents-of-documents-beyond-their-text-a98704b7c655
|
166 |
+
def get_data_paragraph(results, factor, conf_min=0):
|
167 |
|
168 |
data = {}
|
169 |
for i in range(len(results['line_num'])):
|
|
|
206 |
par_idx += 1
|
207 |
|
208 |
# get lines of texts, grouped by paragraph
|
209 |
+
texts_pars = list()
|
210 |
row_indexes = list()
|
211 |
+
texts_lines = list()
|
212 |
+
texts_lines_par = list()
|
213 |
row_index = 0
|
214 |
for _,par in par_data.items():
|
215 |
count_lines = 0
|
216 |
+
lines_par = list()
|
217 |
for _,line in par.items():
|
218 |
if count_lines == 0: row_indexes.append(row_index)
|
219 |
line_text = ' '.join([item[0] for item in line])
|
220 |
+
texts_lines.append(line_text)
|
221 |
+
lines_par.append(line_text)
|
222 |
count_lines += 1
|
223 |
row_index += 1
|
224 |
# lines.append("\n")
|
225 |
row_index += 1
|
226 |
+
texts_lines_par.append(lines_par)
|
227 |
+
texts_pars.append(' '.join(lines_par))
|
228 |
# lines = lines[:-1]
|
229 |
|
230 |
# get paragraphes boxes (par_boxes)
|
231 |
# get lines boxes (line_boxes)
|
232 |
par_boxes = list()
|
233 |
par_idx = 1
|
234 |
+
line_boxes, lines_par_boxes = list(), list()
|
235 |
line_idx = 1
|
236 |
for _, par in par_data.items():
|
237 |
xmins, ymins, xmaxs, ymaxs = list(), list(), list(), list()
|
238 |
+
line_boxes_par = list()
|
239 |
+
count_line_par = 0
|
240 |
for _, line in par.items():
|
241 |
xmin, ymin = line[0][1], line[0][2]
|
242 |
xmax, ymax = (line[-1][1] + line[-1][3]), (line[-1][2] + line[-1][4])
|
243 |
line_boxes.append([int(xmin/factor), int(ymin/factor), int(xmax/factor), int(ymax/factor)])
|
244 |
+
line_boxes_par.append([int(xmin/factor), int(ymin/factor), int(xmax/factor), int(ymax/factor)])
|
245 |
xmins.append(xmin)
|
246 |
ymins.append(ymin)
|
247 |
xmaxs.append(xmax)
|
248 |
ymaxs.append(ymax)
|
249 |
line_idx += 1
|
250 |
+
count_line_par += 1
|
251 |
xmin, ymin, xmax, ymax = min(xmins), min(ymins), max(xmaxs), max(ymaxs)
|
252 |
+
par_bbox = [int(xmin/factor), int(ymin/factor), int(xmax/factor), int(ymax/factor)]
|
253 |
+
par_boxes.append(par_bbox)
|
254 |
+
lines_par_boxes.append(line_boxes_par)
|
255 |
par_idx += 1
|
256 |
|
257 |
+
return texts_lines, texts_pars, texts_lines_par, row_indexes, par_boxes, line_boxes, lines_par_boxes
|
258 |
|
259 |
# rescale image to get 300dpi
|
260 |
def set_image_dpi_resize(image):
|
|
|
383 |
sorted_texts = np.array(texts, dtype=object)[sorted_bboxes_indexes].tolist()
|
384 |
|
385 |
return sorted_bboxes, sorted_texts
|
386 |
+
|
387 |
## PDF processing
|
388 |
|
389 |
# get filename and images of PDF pages
|
|
|
427 |
|
428 |
# https://pyimagesearch.com/2021/11/15/tesseract-page-segmentation-modes-psms-explained-how-to-improve-your-ocr-accuracy/
|
429 |
custom_config = r'--oem 3 --psm 3 -l eng' # default config PyTesseract: --oem 3 --psm 3 -l eng+deu+fra+jpn+por+spa+rus+hin+chi_sim
|
430 |
+
results, texts_lines, texts_pars, texts_lines_par, row_indexes, par_boxes, line_boxes, lines_par_boxes, images_pixels = dict(), dict(), dict(), dict(), dict(), dict(), dict(), dict(), dict()
|
431 |
+
images_ids_list, texts_lines_list, texts_pars_list, texts_lines_par_list, par_boxes_list, line_boxes_list, lines_par_boxes_list, images_list, images_pixels_list, page_no_list, num_pages_list = list(), list(), list(), list(), list(), list(), list(), list(), list(), list(), list()
|
432 |
|
433 |
try:
|
434 |
for i,image in enumerate(images):
|
|
|
440 |
img = np.array(img, dtype='uint8') # convert PIL to cv2
|
441 |
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # gray scale image
|
442 |
ret,img = cv2.threshold(img,127,255,cv2.THRESH_BINARY)
|
443 |
+
|
444 |
# OCR PyTesseract | get langs of page
|
445 |
txt = pytesseract.image_to_string(img, config=custom_config)
|
446 |
txt = txt.strip().lower()
|
|
|
463 |
# get image pixels
|
464 |
images_pixels[i] = feature_extractor(images[i], return_tensors="pt").pixel_values
|
465 |
|
466 |
+
texts_lines[i], texts_pars[i], texts_lines_par[i], row_indexes[i], par_boxes[i], line_boxes[i], lines_par_boxes[i] = get_data_paragraph(results[i], factor, conf_min=0)
|
467 |
+
texts_lines_list.append(texts_lines[i])
|
468 |
+
texts_pars_list.append(texts_pars[i])
|
469 |
+
texts_lines_par_list.append(texts_lines_par[i])
|
470 |
par_boxes_list.append(par_boxes[i])
|
471 |
line_boxes_list.append(line_boxes[i])
|
472 |
+
lines_par_boxes_list.append(lines_par_boxes[i])
|
473 |
images_ids_list.append(i)
|
474 |
images_pixels_list.append(images_pixels[i])
|
475 |
images_list.append(images[i])
|
476 |
page_no_list.append(i)
|
477 |
+
num_pages_list.append(num_imgs)
|
478 |
|
479 |
except:
|
480 |
print(f"There was an error within the extraction of PDF text by the OCR!")
|
481 |
else:
|
482 |
from datasets import Dataset
|
483 |
+
dataset = Dataset.from_dict({"images_ids": images_ids_list, "images": images_list, "images_pixels": images_pixels_list, "page_no": page_no_list, "num_pages": num_pages_list, "texts_line": texts_lines_list, "texts_par": texts_pars_list, "texts_lines_par": texts_lines_par_list, "bboxes_par": par_boxes_list, "bboxes_lines_par":lines_par_boxes_list})
|
484 |
|
485 |
+
|
486 |
# print(f"The text data was successfully extracted by the OCR!")
|
487 |
|
488 |
+
return dataset, texts_lines, texts_pars, texts_lines_par, row_indexes, par_boxes, line_boxes, lines_par_boxes
|
489 |
|
490 |
## Inference
|
491 |
|
492 |
+
def prepare_inference_features_paragraph(example, cls_box = cls_box, sep_box = sep_box):
|
493 |
|
494 |
images_ids_list, chunks_ids_list, input_ids_list, attention_mask_list, bb_list, images_pixels_list = list(), list(), list(), list(), list(), list()
|
495 |
|
496 |
+
# get batch
|
497 |
+
# batch_page_hash = example["page_hash"]
|
498 |
batch_images_ids = example["images_ids"]
|
499 |
batch_images = example["images"]
|
500 |
batch_images_pixels = example["images_pixels"]
|
501 |
+
batch_bboxes_par = example["bboxes_par"]
|
502 |
+
batch_texts_par = example["texts_par"]
|
503 |
batch_images_size = [image.size for image in batch_images]
|
504 |
|
505 |
batch_width, batch_height = [image_size[0] for image_size in batch_images_size], [image_size[1] for image_size in batch_images_size]
|
|
|
509 |
batch_images_ids = [batch_images_ids]
|
510 |
batch_images = [batch_images]
|
511 |
batch_images_pixels = [batch_images_pixels]
|
512 |
+
batch_bboxes_par = [batch_bboxes_par]
|
513 |
+
batch_texts_par = [batch_texts_par]
|
514 |
batch_width, batch_height = [batch_width], [batch_height]
|
515 |
|
516 |
# process all images of the batch
|
517 |
+
for num_batch, (image_id, image_pixels, boxes, texts_par, width, height) in enumerate(zip(batch_images_ids, batch_images_pixels, batch_bboxes_par, batch_texts_par, batch_width, batch_height)):
|
518 |
tokens_list = []
|
519 |
bboxes_list = []
|
520 |
|
521 |
# add a dimension if only on image
|
522 |
+
if not isinstance(texts_par, list):
|
523 |
+
texts_par, boxes = [texts_par], [boxes]
|
524 |
|
525 |
# convert boxes to original
|
526 |
+
normalize_bboxes_par = [normalize_box(upperleft_to_lowerright(box), width, height) for box in boxes]
|
527 |
|
528 |
# sort boxes with texts
|
529 |
# we want sorted lists from top to bottom of the image
|
530 |
+
boxes, texts_par = sort_data_wo_labels(normalize_bboxes_par, texts_par)
|
531 |
|
532 |
count = 0
|
533 |
+
for box, text_par in zip(boxes, texts_par):
|
534 |
+
tokens_par = tokenizer.tokenize(text_par)
|
535 |
+
num_tokens_par = len(tokens_par) # get number of tokens
|
536 |
+
tokens_list.extend(tokens_par)
|
537 |
+
bboxes_list.extend([box] * num_tokens_par) # number of boxes must be the same as the number of tokens
|
|
|
538 |
|
539 |
# use of return_overflowing_tokens=True / stride=doc_stride
|
540 |
# to get parts of image with overlap
|
541 |
# source: https://huggingface.co/course/chapter6/3b?fw=tf#handling-long-contexts
|
542 |
+
encodings = tokenizer(" ".join(texts_par),
|
543 |
truncation=True,
|
544 |
padding="max_length",
|
545 |
max_length=max_length,
|
|
|
666 |
from functools import reduce
|
667 |
|
668 |
# Get predictions (line level)
|
669 |
+
def predictions_paragraph_level(dataset, outputs, images_ids_list, chunk_ids, input_ids, bboxes):
|
670 |
|
671 |
ten_probs_dict, ten_input_ids_dict, ten_bboxes_dict = dict(), dict(), dict()
|
672 |
bboxes_list_dict, input_ids_dict_dict, probs_dict_dict, df = dict(), dict(), dict(), dict()
|
|
|
731 |
input_ids_dict[str(bbox)].append(input_id)
|
732 |
probs_dict[str(bbox)].append(probs)
|
733 |
bbox_prev = bbox
|
734 |
+
|
735 |
probs_bbox = dict()
|
736 |
for i,bbox in enumerate(bboxes_list):
|
737 |
probs = probs_dict[str(bbox)]
|
|
|
844 |
return image, df, num_tokens, page_no, num_pages
|
845 |
|
846 |
# display chunk of PDF image and its data
|
847 |
+
def display_chunk_paragraphs_inference(index_chunk=None):
|
848 |
|
849 |
# get image and image data
|
850 |
image, df, num_tokens, page_no, num_pages = get_encoded_chunk_inference(index_chunk=index_chunk)
|
|
|
857 |
print(f'Chunk ({num_tokens} tokens) of the PDF (page: {page_no+1} / {num_pages})\n')
|
858 |
|
859 |
# display image with bounding boxes
|
860 |
+
print(">> PDF image with bounding boxes of paragraphs\n")
|
861 |
draw = ImageDraw.Draw(image)
|
862 |
|
863 |
labels = list()
|
864 |
for box, text in zip(bboxes, texts):
|
865 |
color = "red"
|
866 |
draw.rectangle(box, outline=color)
|
867 |
+
|
868 |
# resize image to original
|
869 |
width, height = image.size
|
870 |
image = image.resize((int(0.5*width), int(0.5*height)))
|
|
|
875 |
cv2.waitKey(0)
|
876 |
|
877 |
# display image dataframe
|
878 |
+
print("\n>> Dataframe of annotated paragraphs\n")
|
879 |
cols = ["texts", "bboxes"]
|
880 |
df = df[cols]
|
881 |
display(df)
|