Spaces:
Running
Running
Commit
·
1d9ab62
1
Parent(s):
ca048bb
Major update. Support for 15 LLMs, World Flora Online taxonomy validation, geolocation, 2 OCR methods, significant UI changes, stability improvements, consistent JSON parsing
Browse files- api_cost/api_cost.yaml +11 -2
- app.py +0 -2
- vouchervision/tool_wikipedia.py +22 -10
api_cost/api_cost.yaml
CHANGED
|
@@ -7,7 +7,13 @@ GPT_4_32K:
|
|
| 7 |
GPT_4:
|
| 8 |
in: 0.03
|
| 9 |
out: 0.06
|
| 10 |
-
GPT_4_TURBO:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
in: 0.01
|
| 12 |
out: 0.03
|
| 13 |
GPT_3_5_INSTRUCT:
|
|
@@ -24,7 +30,10 @@ AZURE_GPT_4_32K:
|
|
| 24 |
AZURE_GPT_4:
|
| 25 |
in: 0.03
|
| 26 |
out: 0.06
|
| 27 |
-
|
|
|
|
|
|
|
|
|
|
| 28 |
in: 0.01
|
| 29 |
out: 0.03
|
| 30 |
AZURE_GPT_3_5_INSTRUCT:
|
|
|
|
| 7 |
GPT_4:
|
| 8 |
in: 0.03
|
| 9 |
out: 0.06
|
| 10 |
+
# GPT_4_TURBO: ###############
|
| 11 |
+
# in: 0.01
|
| 12 |
+
# out: 0.03
|
| 13 |
+
GPT_4_TURBO_0125:
|
| 14 |
+
in: 0.01
|
| 15 |
+
out: 0.03
|
| 16 |
+
GPT_4_TURBO_1106:
|
| 17 |
in: 0.01
|
| 18 |
out: 0.03
|
| 19 |
GPT_3_5_INSTRUCT:
|
|
|
|
| 30 |
AZURE_GPT_4:
|
| 31 |
in: 0.03
|
| 32 |
out: 0.06
|
| 33 |
+
AZURE_GPT_4_TURBO_1106:
|
| 34 |
+
in: 0.01
|
| 35 |
+
out: 0.03
|
| 36 |
+
AZURE_GPT_4_TURBO_0125:
|
| 37 |
in: 0.01
|
| 38 |
out: 0.03
|
| 39 |
AZURE_GPT_3_5_INSTRUCT:
|
app.py
CHANGED
|
@@ -1561,7 +1561,6 @@ def content_project_settings(col):
|
|
| 1561 |
st.session_state.config['leafmachine']['project']['dir_output'] = st.text_input("Output directory", st.session_state.config['leafmachine']['project'].get('dir_output', ''))
|
| 1562 |
|
| 1563 |
|
| 1564 |
-
# @st.cache_data
|
| 1565 |
def content_llm_cost():
|
| 1566 |
st.write("---")
|
| 1567 |
st.header('LLM Cost Calculator')
|
|
@@ -1596,7 +1595,6 @@ def content_llm_cost():
|
|
| 1596 |
n_img = st.number_input("Number of Images", min_value=0, value=1000, step=100)
|
| 1597 |
|
| 1598 |
# Function to find the model's Input and Output values
|
| 1599 |
-
@st.cache_data
|
| 1600 |
def find_model_values(model, all_dfs):
|
| 1601 |
for df in all_dfs:
|
| 1602 |
if model in df.keys():
|
|
|
|
| 1561 |
st.session_state.config['leafmachine']['project']['dir_output'] = st.text_input("Output directory", st.session_state.config['leafmachine']['project'].get('dir_output', ''))
|
| 1562 |
|
| 1563 |
|
|
|
|
| 1564 |
def content_llm_cost():
|
| 1565 |
st.write("---")
|
| 1566 |
st.header('LLM Cost Calculator')
|
|
|
|
| 1595 |
n_img = st.number_input("Number of Images", min_value=0, value=1000, step=100)
|
| 1596 |
|
| 1597 |
# Function to find the model's Input and Output values
|
|
|
|
| 1598 |
def find_model_values(model, all_dfs):
|
| 1599 |
for df in all_dfs:
|
| 1600 |
if model in df.keys():
|
vouchervision/tool_wikipedia.py
CHANGED
|
@@ -2,7 +2,8 @@ import itertools, wikipediaapi, requests, re, json
|
|
| 2 |
from langchain_community.tools import WikipediaQueryRun
|
| 3 |
from langchain_community.utilities import WikipediaAPIWrapper
|
| 4 |
# from langchain_community.tools.wikidata.tool import WikidataAPIWrapper, WikidataQueryRun
|
| 5 |
-
|
|
|
|
| 6 |
|
| 7 |
class WikipediaLinks():
|
| 8 |
|
|
@@ -370,13 +371,13 @@ class WikipediaLinks():
|
|
| 370 |
|
| 371 |
self.info_packet['WIKI_TAXA']['DATA'].update(self.get_taxonbar_data(page.title))
|
| 372 |
|
| 373 |
-
for back in page.backlinks:
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
|
| 381 |
|
| 382 |
def extract_info_geo(self, page, opt=None):
|
|
@@ -577,5 +578,16 @@ if __name__ == '__main__':
|
|
| 577 |
"minimumElevationInMeters": "",
|
| 578 |
"maximumElevationInMeters": ""
|
| 579 |
}
|
| 580 |
-
|
| 581 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
from langchain_community.tools import WikipediaQueryRun
|
| 3 |
from langchain_community.utilities import WikipediaAPIWrapper
|
| 4 |
# from langchain_community.tools.wikidata.tool import WikidataAPIWrapper, WikidataQueryRun
|
| 5 |
+
import cProfile
|
| 6 |
+
import pstats
|
| 7 |
|
| 8 |
class WikipediaLinks():
|
| 9 |
|
|
|
|
| 371 |
|
| 372 |
self.info_packet['WIKI_TAXA']['DATA'].update(self.get_taxonbar_data(page.title))
|
| 373 |
|
| 374 |
+
# for back in page.backlinks:
|
| 375 |
+
# back = self.sanitize(back)
|
| 376 |
+
# if ':' not in back:
|
| 377 |
+
# link = self.sanitize(self.get_wikipedia_url(back))
|
| 378 |
+
# if link not in links:
|
| 379 |
+
# links.append(link)
|
| 380 |
+
# self.info_packet['WIKI_TAXA']['LINKS'][back] = link
|
| 381 |
|
| 382 |
|
| 383 |
def extract_info_geo(self, page, opt=None):
|
|
|
|
| 578 |
"minimumElevationInMeters": "",
|
| 579 |
"maximumElevationInMeters": ""
|
| 580 |
}
|
| 581 |
+
do_print_profiler = True
|
| 582 |
+
if do_print_profiler:
|
| 583 |
+
profiler = cProfile.Profile()
|
| 584 |
+
profiler.enable()
|
| 585 |
+
|
| 586 |
+
Wiki = WikipediaLinks('D:/D_Desktop/usda_pdf/test.json')
|
| 587 |
+
info_packet= Wiki.gather_wikipedia_results(test_output)
|
| 588 |
+
|
| 589 |
+
if do_print_profiler:
|
| 590 |
+
profiler.disable()
|
| 591 |
+
stats = pstats.Stats(profiler).sort_stats('cumulative')
|
| 592 |
+
stats.print_stats(50)
|
| 593 |
+
|