File size: 13,113 Bytes
e91ac58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af032b9
 
 
 
 
e91ac58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af032b9
 
 
 
 
 
 
 
 
 
 
 
 
e91ac58
af032b9
 
 
 
 
 
 
e91ac58
af032b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e91ac58
af032b9
 
 
 
 
 
 
 
e91ac58
 
af032b9
 
 
 
 
e91ac58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af032b9
e91ac58
af032b9
 
 
 
e91ac58
af032b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e91ac58
af032b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e91ac58
 
 
 
 
af032b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e91ac58
 
af032b9
e91ac58
 
 
 
 
 
 
 
 
af032b9
e91ac58
 
 
 
 
 
 
 
 
af032b9
e91ac58
 
 
 
 
 
 
 
 
 
 
 
 
af032b9
e91ac58
 
 
 
 
 
 
 
 
c3bedaf
 
e91ac58
 
 
 
 
 
 
 
af032b9
e91ac58
 
 
 
af032b9
e91ac58
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
import os, io, openai, vertexai
from mistralai.client import MistralClient
from mistralai.models.chat_completion import ChatMessage
from langchain.schema import HumanMessage
from langchain_openai import AzureChatOpenAI
from vertexai.language_models import TextGenerationModel
from vertexai.preview.generative_models import GenerativeModel
from google.cloud import vision
from datetime import datetime



class APIvalidation:

    def __init__(self, cfg_private, dir_home) -> None:
        self.cfg_private = cfg_private
        self.dir_home = dir_home
        self.formatted_date = self.get_formatted_date()

    def get_formatted_date(self):
        # Get the current date
        current_date = datetime.now()

        # Format the date as "Month day, year" (e.g., "January 23, 2024")
        formatted_date = current_date.strftime("%B %d, %Y")

        return formatted_date


    def has_API_key(self, val):
        if val:
            return True
        else:
            return False
            
    def check_openai_api_key(self):
        if self.cfg_private:
            openai.api_key = self.cfg_private['openai']['OPENAI_API_KEY']
        else:
            openai.api_key = os.getenv('OPENAI_API_KEY')

        try:
            openai.models.list()
            return True
        except:
            return False
        
    def check_google_ocr_api_key(self):
        # if os.path.exists(self.cfg_private['google_cloud']['path_json_file']):
        #     os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = self.cfg_private['google_cloud']['path_json_file']
        # elif os.path.exists(self.cfg_private['google_cloud']['path_json_file_service_account2']):
        #     os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = self.cfg_private['google_cloud']['path_json_file_service_account2']
        # else:
        #     return False
        
        try:
            logo_path = os.path.join(self.dir_home, 'img','logo.png')
            client = vision.ImageAnnotatorClient()
            with io.open(logo_path, 'rb') as image_file:
                content = image_file.read()
            image = vision.Image(content=content)
            response = client.document_text_detection(image=image)
            texts = response.text_annotations       
            normal_cleaned_text = texts[0].description if texts else None
            if normal_cleaned_text:
                return True
            else:
                return False
        except:
            return False
        
    def check_azure_openai_api_key(self):
        if self.cfg_private:
            try:
                # Initialize the Azure OpenAI client
                model = AzureChatOpenAI(
                    deployment_name = 'gpt-35-turbo',#'gpt-35-turbo',
                    openai_api_version = self.cfg_private['openai_azure']['api_version'],
                    openai_api_key = self.cfg_private['openai_azure']['openai_api_key'],
                    azure_endpoint = self.cfg_private['openai_azure']['openai_api_base'],
                    openai_organization = self.cfg_private['openai_azure']['openai_organization'],
                )
                msg = HumanMessage(content="hello")
                # self.llm_object.temperature = self.config.get('temperature')
                response = model([msg])

                # Check the response content (you might need to adjust this depending on how your AzureChatOpenAI class handles responses)
                if response:
                    return True
                else:
                    return False

            except Exception as e:  # Use a more specific exception if possible
                return False
        else:
            try:
                azure_api_version = os.getenv('AZURE_API_VERSION')
                azure_api_key = os.getenv('AZURE_API_KEY')
                azure_api_base = os.getenv('AZURE_API_BASE')
                azure_organization = os.getenv('AZURE_ORGANIZATION')
                # Initialize the Azure OpenAI client
                model = AzureChatOpenAI(
                    deployment_name = 'gpt-35-turbo',#'gpt-35-turbo',
                    openai_api_version = azure_api_version,
                    openai_api_key = azure_api_key,
                    azure_endpoint = azure_api_base,
                    openai_organization = azure_organization,
                )
                msg = HumanMessage(content="hello")
                # self.llm_object.temperature = self.config.get('temperature')
                response = model([msg])

                # Check the response content (you might need to adjust this depending on how your AzureChatOpenAI class handles responses)
                if response:
                    return True
                else:
                    return False

            except Exception as e:  # Use a more specific exception if possible
                return False
        
    def check_mistral_api_key(self):
        if self.cfg_private:
            client = MistralClient(api_key=self.cfg_private['mistral']['mistral_key'])
        else:
            client = MistralClient(api_key=os.getenv('MISTRAL_API_KEY'))

        try:
            # Initialize the Mistral Client with the API key

            # Create a simple message
            messages = [ChatMessage(role="user", content="hello")]

            # Send the message and get the response
            chat_response = client.chat(
                model="mistral-tiny",  
                messages=messages,
            )

            # Check if the response is valid (adjust this according to the actual response structure)
            if chat_response and chat_response.choices:
                return True
            else:
                return False
        except Exception as e:  # Replace with a more specific exception if possible
            return False
        
    def check_google_vertex_genai_api_key(self):
        results = {"palm2": False, "gemini": False}
        if self.cfg_private:
            try:
                # Assuming genai and vertexai are clients for Google services
                os.environ["GOOGLE_API_KEY"] = self.cfg_private['google_palm']['google_palm_api']
                # genai.configure(api_key=self.cfg_private['google_palm']['google_palm_api'])
                vertexai.init(project= self.cfg_private['google_palm']['project_id'], location=self.cfg_private['google_palm']['location'])

                try:
                    model = TextGenerationModel.from_pretrained("text-bison@001")
                    response = model.predict("Hello")
                    test_response_palm = response.text
                    # llm_palm = ChatGoogleGenerativeAI(model="text-bison@001")
                    # test_response_palm = llm_palm.invoke("Hello")
                    if test_response_palm:
                        results["palm2"] = True
                except Exception as e:  
                    pass

                try:
                    model = GenerativeModel("gemini-pro")
                    response = model.generate_content("Hello")
                    test_response_gemini = response.text
                    # llm_gemini = ChatGoogleGenerativeAI(model="gemini-pro")
                    # test_response_gemini = llm_gemini.invoke("Hello")
                    if test_response_gemini:
                        results["gemini"] = True
                except Exception as e:  
                    pass

                return results
            except Exception as e:  # Replace with a more specific exception if possible
                return results
        else:
            try:
                # Assuming genai and vertexai are clients for Google services
                os.environ["GOOGLE_API_KEY"] = os.getenv('PALM_API_KEY')
                # genai.configure(api_key=self.cfg_private['google_palm']['google_palm_api'])
                vertexai.init(project= os.getenv('GOOGLE_PROJECT_ID'), location=os.getenv('GOOGLE_LOCATION'))

                try:
                    model = TextGenerationModel.from_pretrained("text-bison@001")
                    response = model.predict("Hello")
                    test_response_palm = response.text
                    # llm_palm = ChatGoogleGenerativeAI(model="text-bison@001")
                    # test_response_palm = llm_palm.invoke("Hello")
                    if test_response_palm:
                        results["palm2"] = True
                except Exception as e:  
                    pass

                try:
                    model = GenerativeModel("gemini-pro")
                    response = model.generate_content("Hello")
                    test_response_gemini = response.text
                    # llm_gemini = ChatGoogleGenerativeAI(model="gemini-pro")
                    # test_response_gemini = llm_gemini.invoke("Hello")
                    if test_response_gemini:
                        results["gemini"] = True
                except Exception as e:  
                    pass

                return results
            except Exception as e:  # Replace with a more specific exception if possible
                return results

    def report_api_key_status(self):
        missing_keys = []
        present_keys = []

        if self.cfg_private:
            k_OPENAI_API_KEY = self.cfg_private['openai']['OPENAI_API_KEY']
            k_openai_azure = self.cfg_private['openai_azure']['api_version']
            k_google_palm_api = self.cfg_private['google_palm']['google_palm_api']
            k_project_id = self.cfg_private['google_palm']['project_id']
            k_location = self.cfg_private['google_palm']['location']
            k_mistral = self.cfg_private['mistral']['mistral_key']
            k_here = self.cfg_private['here']['api_key']
            k_opencage = self.cfg_private['open_cage_geocode']['api_key']
        else:
            k_OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
            k_openai_azure = os.getenv('AZURE_API_VERSION')
            k_google_palm_api = os.getenv('PALM_API_KEY')
            k_project_id = os.getenv('GOOGLE_PROJECT_ID')
            k_location = os.getenv('GOOGLE_LOCATION')
            k_mistral = os.getenv('MISTRAL_API_KEY')
            k_here = os.getenv('here_api_key')
            k_opencage = os.getenv('open_cage_geocode')


        # Check each key and add to the respective list
        # OpenAI key check
        if self.has_API_key(k_OPENAI_API_KEY):
            is_valid = self.check_openai_api_key()
            if is_valid:
                present_keys.append('OpenAI (Valid)')
            else:
                present_keys.append('OpenAI (Invalid)')
        else:
            missing_keys.append('OpenAI')

        # Azure OpenAI key check
        if self.has_API_key(k_openai_azure):
            is_valid = self.check_azure_openai_api_key()
            if is_valid:
                present_keys.append('Azure OpenAI (Valid)')
            else:
                present_keys.append('Azure OpenAI (Invalid)')
        else:
            missing_keys.append('Azure OpenAI')

        # Google PALM2/Gemini key check
        if self.has_API_key(k_google_palm_api) and self.has_API_key(k_project_id) and self.has_API_key(k_location):
            google_results = self.check_google_vertex_genai_api_key()
            if google_results['palm2']:
                present_keys.append('Palm2 (Valid)')
            else:
                present_keys.append('Palm2 (Invalid)')
            if google_results['gemini']:
                present_keys.append('Gemini (Valid)')
            else:
                present_keys.append('Gemini (Invalid)')
        else:
            missing_keys.append('Google VertexAI/GenAI')

        # Google OCR key check
        if self.has_API_key(k_google_palm_api) and self.has_API_key(k_project_id) and self.has_API_key(k_location):
            is_valid = self.check_google_ocr_api_key()
            if is_valid:
                present_keys.append('Google OCR (Valid)')
            else:
                present_keys.append('Google OCR (Invalid)')
        else:
            missing_keys.append('Google OCR')

        # Mistral key check
        if self.has_API_key(k_mistral):
            is_valid = self.check_mistral_api_key()
            if is_valid:
                present_keys.append('Mistral (Valid)')
            else:
                present_keys.append('Mistral (Invalid)')
        else:
            missing_keys.append('Mistral')


        if self.has_API_key(k_here):
            present_keys.append('HERE Geocode (Valid)')
        else:
            missing_keys.append('HERE Geocode (Invalid)')

        if self.has_API_key(k_opencage):
            present_keys.append('OpenCage Geocode (Valid)')
        else:
            missing_keys.append('OpenCage Geocode (Invalid)')

        # Create a report string
        report = "API Key Status Report:\n"
        report += "Present Keys: " + ", ".join(present_keys) + "\n"
        report += "Missing Keys: " + ", ".join(missing_keys) + "\n"

        # print(report)
        return present_keys, missing_keys, self.formatted_date