Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,9 +5,43 @@ import os
|
|
| 5 |
import re
|
| 6 |
from datetime import datetime
|
| 7 |
from huggingface_hub import InferenceClient
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
|
|
|
| 9 |
|
| 10 |
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
# Load JSON files
|
| 12 |
def load_json_file(file_name):
|
| 13 |
file_path = os.path.join("data", file_name)
|
|
@@ -102,7 +136,7 @@ class PromptGenerator:
|
|
| 102 |
|
| 103 |
def generate_prompt(self, seed, custom, subject, artform, photo_type, body_types, default_tags, roles, hairstyles,
|
| 104 |
additional_details, photography_styles, device, photographer, artist, digital_artform,
|
| 105 |
-
place, lighting, clothing, composition, pose, background):
|
| 106 |
kwargs = locals()
|
| 107 |
del kwargs['self']
|
| 108 |
|
|
@@ -254,6 +288,10 @@ class PromptGenerator:
|
|
| 254 |
components.append(f"by {self.get_choice(kwargs.get('artist', ''), ARTIST)}")
|
| 255 |
components.append("BREAK_CLIPL")
|
| 256 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 257 |
prompt = " ".join(components)
|
| 258 |
prompt = re.sub(" +", " ", prompt)
|
| 259 |
replaced = prompt.replace("of as", "of")
|
|
@@ -367,6 +405,7 @@ def create_interface():
|
|
| 367 |
pose = gr.Dropdown(["disabled", "random"] + POSE, label="Pose", value="random")
|
| 368 |
background = gr.Dropdown(["disabled", "random"] + BACKGROUND, label="Background", value="random")
|
| 369 |
with gr.Column():
|
|
|
|
| 370 |
generate_button = gr.Button("Generate Prompt")
|
| 371 |
output = gr.Textbox(label="Generated Prompt / Input Text", lines=5)
|
| 372 |
t5xxl_output = gr.Textbox(label="T5XXL Output", visible=True)
|
|
@@ -389,7 +428,7 @@ def create_interface():
|
|
| 389 |
prompt_generator.generate_prompt,
|
| 390 |
inputs=[seed, custom, subject, artform, photo_type, body_types, default_tags, roles, hairstyles,
|
| 391 |
additional_details, photography_styles, device, photographer, artist, digital_artform,
|
| 392 |
-
place, lighting, clothing, composition, pose, background],
|
| 393 |
outputs=[output, gr.Number(visible=False), t5xxl_output, clip_l_output, clip_g_output]
|
| 394 |
)
|
| 395 |
|
|
|
|
| 5 |
import re
|
| 6 |
from datetime import datetime
|
| 7 |
from huggingface_hub import InferenceClient
|
| 8 |
+
import subprocess
|
| 9 |
+
import torch
|
| 10 |
+
from PIL import Image
|
| 11 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
| 12 |
|
| 13 |
+
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
| 14 |
|
| 15 |
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
# Initialize Florence model
|
| 19 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 20 |
+
florence_model = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True).to(device).eval()
|
| 21 |
+
florence_processor = AutoProcessor.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True)
|
| 22 |
+
|
| 23 |
+
# Florence caption function
|
| 24 |
+
def florence_caption(image):
|
| 25 |
+
if not isinstance(image, Image.Image):
|
| 26 |
+
image = Image.fromarray(image)
|
| 27 |
+
|
| 28 |
+
inputs = florence_processor(text="<MORE_DETAILED_CAPTION>", images=image, return_tensors="pt").to(device)
|
| 29 |
+
generated_ids = florence_model.generate(
|
| 30 |
+
input_ids=inputs["input_ids"],
|
| 31 |
+
pixel_values=inputs["pixel_values"],
|
| 32 |
+
max_new_tokens=1024,
|
| 33 |
+
early_stopping=False,
|
| 34 |
+
do_sample=False,
|
| 35 |
+
num_beams=3,
|
| 36 |
+
)
|
| 37 |
+
generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
| 38 |
+
parsed_answer = florence_processor.post_process_generation(
|
| 39 |
+
generated_text,
|
| 40 |
+
task="<MORE_DETAILED_CAPTION>",
|
| 41 |
+
image_size=(image.width, image.height)
|
| 42 |
+
)
|
| 43 |
+
return parsed_answer["<MORE_DETAILED_CAPTION>"]
|
| 44 |
+
|
| 45 |
# Load JSON files
|
| 46 |
def load_json_file(file_name):
|
| 47 |
file_path = os.path.join("data", file_name)
|
|
|
|
| 136 |
|
| 137 |
def generate_prompt(self, seed, custom, subject, artform, photo_type, body_types, default_tags, roles, hairstyles,
|
| 138 |
additional_details, photography_styles, device, photographer, artist, digital_artform,
|
| 139 |
+
place, lighting, clothing, composition, pose, background, input_image):
|
| 140 |
kwargs = locals()
|
| 141 |
del kwargs['self']
|
| 142 |
|
|
|
|
| 288 |
components.append(f"by {self.get_choice(kwargs.get('artist', ''), ARTIST)}")
|
| 289 |
components.append("BREAK_CLIPL")
|
| 290 |
|
| 291 |
+
if input_image is not None:
|
| 292 |
+
caption = florence_caption(input_image)
|
| 293 |
+
components.append(f" {caption}")
|
| 294 |
+
|
| 295 |
prompt = " ".join(components)
|
| 296 |
prompt = re.sub(" +", " ", prompt)
|
| 297 |
replaced = prompt.replace("of as", "of")
|
|
|
|
| 405 |
pose = gr.Dropdown(["disabled", "random"] + POSE, label="Pose", value="random")
|
| 406 |
background = gr.Dropdown(["disabled", "random"] + BACKGROUND, label="Background", value="random")
|
| 407 |
with gr.Column():
|
| 408 |
+
input_image = gr.Image(label="Input Image (optional)")
|
| 409 |
generate_button = gr.Button("Generate Prompt")
|
| 410 |
output = gr.Textbox(label="Generated Prompt / Input Text", lines=5)
|
| 411 |
t5xxl_output = gr.Textbox(label="T5XXL Output", visible=True)
|
|
|
|
| 428 |
prompt_generator.generate_prompt,
|
| 429 |
inputs=[seed, custom, subject, artform, photo_type, body_types, default_tags, roles, hairstyles,
|
| 430 |
additional_details, photography_styles, device, photographer, artist, digital_artform,
|
| 431 |
+
place, lighting, clothing, composition, pose, background, input_image],
|
| 432 |
outputs=[output, gr.Number(visible=False), t5xxl_output, clip_l_output, clip_g_output]
|
| 433 |
)
|
| 434 |
|