Spaces:
Runtime error
Runtime error
| import spaces | |
| import torch | |
| from PIL import Image | |
| from transformers import AutoProcessor, AutoModelForCausalLM, Qwen2VLForConditionalGeneration | |
| from qwen_vl_utils import process_vision_info | |
| import numpy as np | |
| import os | |
| from datetime import datetime | |
| import subprocess | |
| subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| # Initialize Florence model | |
| florence_model = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-large', trust_remote_code=True).to(device).eval() | |
| florence_processor = AutoProcessor.from_pretrained('microsoft/Florence-2-large', trust_remote_code=True) | |
| # Initialize Qwen2-VL-2B model | |
| qwen_model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True, torch_dtype="auto").to(device).eval() | |
| qwen_processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True) | |
| def florence_caption(image): | |
| if not isinstance(image, Image.Image): | |
| image = Image.fromarray(image) | |
| inputs = florence_processor(text="<MORE_DETAILED_CAPTION>", images=image, return_tensors="pt").to(device) | |
| generated_ids = florence_model.generate( | |
| input_ids=inputs["input_ids"], | |
| pixel_values=inputs["pixel_values"], | |
| max_new_tokens=1024, | |
| early_stopping=False, | |
| do_sample=False, | |
| num_beams=3, | |
| ) | |
| generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0] | |
| parsed_answer = florence_processor.post_process_generation( | |
| generated_text, | |
| task="<MORE_DETAILED_CAPTION>", | |
| image_size=(image.width, image.height) | |
| ) | |
| return parsed_answer["<MORE_DETAILED_CAPTION>"] | |
| def array_to_image_path(image_array): | |
| img = Image.fromarray(np.uint8(image_array)) | |
| timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
| filename = f"image_{timestamp}.png" | |
| img.save(filename) | |
| full_path = os.path.abspath(filename) | |
| return full_path | |
| def qwen_caption(image): | |
| if not isinstance(image, Image.Image): | |
| image = Image.fromarray(np.uint8(image)) | |
| image_path = array_to_image_path(np.array(image)) | |
| messages = [ | |
| { | |
| "role": "user", | |
| "content": [ | |
| { | |
| "type": "image", | |
| "image": image_path, | |
| }, | |
| {"type": "text", "text": "Describe this image in great detail in one paragraph."}, | |
| ], | |
| } | |
| ] | |
| text = qwen_processor.apply_chat_template( | |
| messages, tokenize=False, add_generation_prompt=True | |
| ) | |
| image_inputs, video_inputs = process_vision_info(messages) | |
| inputs = qwen_processor( | |
| text=[text], | |
| images=image_inputs, | |
| videos=video_inputs, | |
| padding=True, | |
| return_tensors="pt", | |
| ) | |
| inputs = inputs.to(device) | |
| generated_ids = qwen_model.generate(**inputs, max_new_tokens=256) | |
| generated_ids_trimmed = [ | |
| out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) | |
| ] | |
| output_text = qwen_processor.batch_decode( | |
| generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
| ) | |
| return output_text[0] |