|
import gradio as gr |
|
|
|
import whisper |
|
from transformers import MarianMTModel, MarianTokenizer, pipeline |
|
|
|
model_name = "Helsinki-NLP/opus-mt-tc-big-lt-en" |
|
tokenizer = MarianTokenizer.from_pretrained(model_name) |
|
translation_model = MarianMTModel.from_pretrained(model_name) |
|
|
|
model_name = "Aismantas/whisper-base-lithuanian" |
|
asr_pipeline = pipeline("automatic-speech-recognition", model=model_name) |
|
|
|
def transcribe(filepath): |
|
|
|
|
|
transcript = asr_pipeline(filepath) |
|
return translation_model.generate(**tokenizer(transcript['text'], return_tensors="pt", padding=True)) |
|
|
|
|
|
demo = gr.Interface(fn=transcribe, inputs=[gr.Audio(type='filepath')], outputs="text") |
|
demo.launch() |