Spaces:
Running
on
A10G
Running
on
A10G
Commit
·
95d3029
1
Parent(s):
ec4e754
Support both ViT-L and ViT-H!
Browse files- use clip-interrogator as pip package
- use huggingface_hub to download preprocessed files
- .gitignore +2 -0
- app.py +88 -228
- requirements.txt +6 -3
.gitignore
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
cache/
|
| 2 |
+
venv/
|
app.py
CHANGED
|
@@ -1,221 +1,71 @@
|
|
| 1 |
-
|
| 2 |
-
sys.path.append('src/blip')
|
| 3 |
-
sys.path.append('src/clip')
|
| 4 |
-
|
| 5 |
-
import clip
|
| 6 |
import gradio as gr
|
| 7 |
-
import hashlib
|
| 8 |
-
import math
|
| 9 |
-
import numpy as np
|
| 10 |
import os
|
| 11 |
-
import
|
| 12 |
-
import
|
| 13 |
-
import torchvision.transforms as T
|
| 14 |
-
import torchvision.transforms.functional as TF
|
| 15 |
-
|
| 16 |
-
from models.blip import blip_decoder
|
| 17 |
-
from PIL import Image
|
| 18 |
-
from torch import nn
|
| 19 |
-
from torch.nn import functional as F
|
| 20 |
-
from tqdm import tqdm
|
| 21 |
-
|
| 22 |
from share_btn import community_icon_html, loading_icon_html, share_js
|
| 23 |
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
return [self.labels[i] for i in tops]
|
| 86 |
-
|
| 87 |
-
num_chunks = int(math.ceil(len(self.labels)/chunk_size))
|
| 88 |
-
keep_per_chunk = int(chunk_size / num_chunks)
|
| 89 |
-
|
| 90 |
-
top_labels, top_embeds = [], []
|
| 91 |
-
for chunk_idx in tqdm(range(num_chunks)):
|
| 92 |
-
start = chunk_idx*chunk_size
|
| 93 |
-
stop = min(start+chunk_size, len(self.embeds))
|
| 94 |
-
tops = self._rank(image_features, self.embeds[start:stop], top_count=keep_per_chunk)
|
| 95 |
-
top_labels.extend([self.labels[start+i] for i in tops])
|
| 96 |
-
top_embeds.extend([self.embeds[start+i] for i in tops])
|
| 97 |
-
|
| 98 |
-
tops = self._rank(image_features, top_embeds, top_count=top_count)
|
| 99 |
-
return [top_labels[i] for i in tops]
|
| 100 |
-
|
| 101 |
-
def generate_caption(pil_image):
|
| 102 |
-
gpu_image = T.Compose([
|
| 103 |
-
T.Resize((blip_image_eval_size, blip_image_eval_size), interpolation=TF.InterpolationMode.BICUBIC),
|
| 104 |
-
T.ToTensor(),
|
| 105 |
-
T.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
|
| 106 |
-
])(pil_image).unsqueeze(0).to(device)
|
| 107 |
-
|
| 108 |
-
with torch.no_grad():
|
| 109 |
-
caption = blip_model.generate(gpu_image, sample=False, num_beams=3, max_length=20, min_length=5)
|
| 110 |
-
return caption[0]
|
| 111 |
-
|
| 112 |
-
def load_list(filename):
|
| 113 |
-
with open(filename, 'r', encoding='utf-8', errors='replace') as f:
|
| 114 |
-
items = [line.strip() for line in f.readlines()]
|
| 115 |
-
return items
|
| 116 |
-
|
| 117 |
-
def rank_top(image_features, text_array):
|
| 118 |
-
text_tokens = clip.tokenize([text for text in text_array]).to(device)
|
| 119 |
-
with torch.no_grad():
|
| 120 |
-
text_features = clip_model.encode_text(text_tokens).float()
|
| 121 |
-
text_features /= text_features.norm(dim=-1, keepdim=True)
|
| 122 |
-
|
| 123 |
-
similarity = torch.zeros((1, len(text_array)), device=device)
|
| 124 |
-
for i in range(image_features.shape[0]):
|
| 125 |
-
similarity += (image_features[i].unsqueeze(0) @ text_features.T).softmax(dim=-1)
|
| 126 |
-
|
| 127 |
-
_, top_labels = similarity.cpu().topk(1, dim=-1)
|
| 128 |
-
return text_array[top_labels[0][0].numpy()]
|
| 129 |
-
|
| 130 |
-
def similarity(image_features, text):
|
| 131 |
-
text_tokens = clip.tokenize([text]).to(device)
|
| 132 |
-
with torch.no_grad():
|
| 133 |
-
text_features = clip_model.encode_text(text_tokens).float()
|
| 134 |
-
text_features /= text_features.norm(dim=-1, keepdim=True)
|
| 135 |
-
similarity = text_features.cpu().numpy() @ image_features.cpu().numpy().T
|
| 136 |
-
return similarity[0][0]
|
| 137 |
-
|
| 138 |
-
def interrogate(image):
|
| 139 |
-
caption = generate_caption(image)
|
| 140 |
-
|
| 141 |
-
images = clip_preprocess(image).unsqueeze(0).to(device)
|
| 142 |
-
with torch.no_grad():
|
| 143 |
-
image_features = clip_model.encode_image(images).float()
|
| 144 |
-
image_features /= image_features.norm(dim=-1, keepdim=True)
|
| 145 |
-
|
| 146 |
-
flaves = flavors.rank(image_features, flavor_intermediate_count)
|
| 147 |
-
best_medium = mediums.rank(image_features, 1)[0]
|
| 148 |
-
best_artist = artists.rank(image_features, 1)[0]
|
| 149 |
-
best_trending = trendings.rank(image_features, 1)[0]
|
| 150 |
-
best_movement = movements.rank(image_features, 1)[0]
|
| 151 |
-
|
| 152 |
-
best_prompt = caption
|
| 153 |
-
best_sim = similarity(image_features, best_prompt)
|
| 154 |
-
|
| 155 |
-
def check(addition):
|
| 156 |
-
nonlocal best_prompt, best_sim
|
| 157 |
-
prompt = best_prompt + ", " + addition
|
| 158 |
-
sim = similarity(image_features, prompt)
|
| 159 |
-
if sim > best_sim:
|
| 160 |
-
best_sim = sim
|
| 161 |
-
best_prompt = prompt
|
| 162 |
-
return True
|
| 163 |
-
return False
|
| 164 |
-
|
| 165 |
-
def check_multi_batch(opts):
|
| 166 |
-
nonlocal best_prompt, best_sim
|
| 167 |
-
prompts = []
|
| 168 |
-
for i in range(2**len(opts)):
|
| 169 |
-
prompt = best_prompt
|
| 170 |
-
for bit in range(len(opts)):
|
| 171 |
-
if i & (1 << bit):
|
| 172 |
-
prompt += ", " + opts[bit]
|
| 173 |
-
prompts.append(prompt)
|
| 174 |
-
|
| 175 |
-
prompt = rank_top(image_features, prompts)
|
| 176 |
-
sim = similarity(image_features, prompt)
|
| 177 |
-
if sim > best_sim:
|
| 178 |
-
best_sim = sim
|
| 179 |
-
best_prompt = prompt
|
| 180 |
-
|
| 181 |
-
check_multi_batch([best_medium, best_artist, best_trending, best_movement])
|
| 182 |
-
|
| 183 |
-
extended_flavors = set(flaves)
|
| 184 |
-
for _ in tqdm(range(25), desc="Flavor chain"):
|
| 185 |
-
try:
|
| 186 |
-
best = rank_top(image_features, [f"{best_prompt}, {f}" for f in extended_flavors])
|
| 187 |
-
flave = best[len(best_prompt)+2:]
|
| 188 |
-
if not check(flave):
|
| 189 |
-
break
|
| 190 |
-
extended_flavors.remove(flave)
|
| 191 |
-
except:
|
| 192 |
-
# exceeded max prompt length
|
| 193 |
-
break
|
| 194 |
-
|
| 195 |
-
return best_prompt
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
sites = ['Artstation', 'behance', 'cg society', 'cgsociety', 'deviantart', 'dribble', 'flickr', 'instagram', 'pexels', 'pinterest', 'pixabay', 'pixiv', 'polycount', 'reddit', 'shutterstock', 'tumblr', 'unsplash', 'zbrush central']
|
| 199 |
-
trending_list = [site for site in sites]
|
| 200 |
-
trending_list.extend(["trending on "+site for site in sites])
|
| 201 |
-
trending_list.extend(["featured on "+site for site in sites])
|
| 202 |
-
trending_list.extend([site+" contest winner" for site in sites])
|
| 203 |
-
|
| 204 |
-
raw_artists = load_list('data/artists.txt')
|
| 205 |
-
artists = [f"by {a}" for a in raw_artists]
|
| 206 |
-
artists.extend([f"inspired by {a}" for a in raw_artists])
|
| 207 |
-
|
| 208 |
-
artists = LabelTable(artists, "artists")
|
| 209 |
-
flavors = LabelTable(load_list('data/flavors.txt'), "flavors")
|
| 210 |
-
mediums = LabelTable(load_list('data/mediums.txt'), "mediums")
|
| 211 |
-
movements = LabelTable(load_list('data/movements.txt'), "movements")
|
| 212 |
-
trendings = LabelTable(trending_list, "trendings")
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
def inference(image):
|
| 216 |
-
return interrogate(image), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
|
| 217 |
-
|
| 218 |
-
title = """
|
| 219 |
<div style="text-align: center; max-width: 650px; margin: 0 auto;">
|
| 220 |
<div
|
| 221 |
style="
|
|
@@ -234,7 +84,8 @@ title = """
|
|
| 234 |
</p>
|
| 235 |
</div>
|
| 236 |
"""
|
| 237 |
-
|
|
|
|
| 238 |
<div style="text-align: center; max-width: 650px; margin: 0 auto;">
|
| 239 |
<p>
|
| 240 |
Example art by <a href="https://pixabay.com/illustrations/watercolour-painting-art-effect-4799014/">Layers</a>
|
|
@@ -255,19 +106,15 @@ article = """
|
|
| 255 |
</div>
|
| 256 |
"""
|
| 257 |
|
| 258 |
-
|
| 259 |
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
|
| 260 |
a {text-decoration-line: underline; font-weight: 600;}
|
| 261 |
.animate-spin {
|
| 262 |
animation: spin 1s linear infinite;
|
| 263 |
}
|
| 264 |
@keyframes spin {
|
| 265 |
-
from {
|
| 266 |
-
|
| 267 |
-
}
|
| 268 |
-
to {
|
| 269 |
-
transform: rotate(360deg);
|
| 270 |
-
}
|
| 271 |
}
|
| 272 |
#share-btn-container {
|
| 273 |
display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
|
|
@@ -287,11 +134,13 @@ a {text-decoration-line: underline; font-weight: 600;}
|
|
| 287 |
}
|
| 288 |
'''
|
| 289 |
|
| 290 |
-
with gr.Blocks(css=
|
| 291 |
with gr.Column(elem_id="col-container"):
|
| 292 |
-
gr.HTML(
|
| 293 |
|
| 294 |
input_image = gr.Image(type='pil', elem_id="input-img")
|
|
|
|
|
|
|
| 295 |
submit_btn = gr.Button("Submit")
|
| 296 |
output_text = gr.Textbox(label="Output", elem_id="output-txt")
|
| 297 |
|
|
@@ -300,13 +149,24 @@ with gr.Blocks(css=css) as block:
|
|
| 300 |
loading_icon = gr.HTML(loading_icon_html, visible=False)
|
| 301 |
share_button = gr.Button("Share to community", elem_id="share-btn", visible=False)
|
| 302 |
|
| 303 |
-
examples=[['example01.jpg'], ['example02.jpg']]
|
| 304 |
-
ex = gr.Examples(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 305 |
ex.dataset.headers = [""]
|
| 306 |
|
| 307 |
-
gr.HTML(
|
| 308 |
|
| 309 |
-
submit_btn.click(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 310 |
share_button.click(None, [], [], _js=share_js)
|
| 311 |
|
| 312 |
block.queue(max_size=32).launch(show_api=False)
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
| 3 |
import os
|
| 4 |
+
from clip_interrogator import Config, Interrogator
|
| 5 |
+
from huggingface_hub import hf_hub_download
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
from share_btn import community_icon_html, loading_icon_html, share_js
|
| 7 |
|
| 8 |
+
MODELS = ['ViT-L (best for Stable Diffusion 1.*)', 'ViT-H (best for Stable Diffusion 2.*)']
|
| 9 |
+
|
| 10 |
+
# download preprocessed files
|
| 11 |
+
PREPROCESS_FILES = [
|
| 12 |
+
'ViT-H-14_laion2b_s32b_b79k_artists.pkl',
|
| 13 |
+
'ViT-H-14_laion2b_s32b_b79k_flavors.pkl',
|
| 14 |
+
'ViT-H-14_laion2b_s32b_b79k_mediums.pkl',
|
| 15 |
+
'ViT-H-14_laion2b_s32b_b79k_movements.pkl',
|
| 16 |
+
'ViT-H-14_laion2b_s32b_b79k_trendings.pkl',
|
| 17 |
+
'ViT-L-14_openai_artists.pkl',
|
| 18 |
+
'ViT-L-14_openai_flavors.pkl',
|
| 19 |
+
'ViT-L-14_openai_mediums.pkl',
|
| 20 |
+
'ViT-L-14_openai_movements.pkl',
|
| 21 |
+
'ViT-L-14_openai_trendings.pkl',
|
| 22 |
+
]
|
| 23 |
+
print("Download preprocessed cache files...")
|
| 24 |
+
for file in PREPROCESS_FILES:
|
| 25 |
+
path = hf_hub_download(repo_id="pharma/ci-preprocess", filename=file, cache_dir="cache")
|
| 26 |
+
cache_path = os.path.dirname(path)
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
# load BLIP and ViT-L
|
| 30 |
+
config = Config(cache_path=cache_path, clip_model_path="cache", clip_model_name="ViT-L-14/openai")
|
| 31 |
+
ci_vitl = Interrogator(config)
|
| 32 |
+
ci_vitl.clip_model = ci_vitl.clip_model.to("cpu")
|
| 33 |
+
|
| 34 |
+
# load ViT-H
|
| 35 |
+
config.blip_model = ci_vitl.blip_model
|
| 36 |
+
config.clip_model_name = "ViT-H-14/laion2b_s32b_b79k"
|
| 37 |
+
ci_vith = Interrogator(config)
|
| 38 |
+
ci_vith.clip_model = ci_vith.clip_model.to("cpu")
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def inference(image, clip_model_name, mode):
|
| 42 |
+
|
| 43 |
+
# move selected model to GPU and other model to CPU
|
| 44 |
+
if clip_model_name == MODELS[0]:
|
| 45 |
+
ci_vith.clip_model = ci_vith.clip_model.to("cpu")
|
| 46 |
+
ci_vitl.clip_model = ci_vitl.clip_model.to(ci_vitl.device)
|
| 47 |
+
ci = ci_vitl
|
| 48 |
+
else:
|
| 49 |
+
ci_vitl.clip_model = ci_vitl.clip_model.to("cpu")
|
| 50 |
+
ci_vith.clip_model = ci_vith.clip_model.to(ci_vith.device)
|
| 51 |
+
ci = ci_vith
|
| 52 |
+
|
| 53 |
+
ci.config.blip_num_beams = 64
|
| 54 |
+
ci.config.chunk_size = 2048
|
| 55 |
+
ci.config.flavor_intermediate_count = 2048 if clip_model_name == MODELS[0] else 1024
|
| 56 |
+
|
| 57 |
+
image = image.convert('RGB')
|
| 58 |
+
if mode == 'best':
|
| 59 |
+
prompt = ci.interrogate(image)
|
| 60 |
+
elif mode == 'classic':
|
| 61 |
+
prompt = ci.interrogate_classic(image)
|
| 62 |
+
else:
|
| 63 |
+
prompt = ci.interrogate_fast(image)
|
| 64 |
+
|
| 65 |
+
return prompt, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
TITLE = """
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
<div style="text-align: center; max-width: 650px; margin: 0 auto;">
|
| 70 |
<div
|
| 71 |
style="
|
|
|
|
| 84 |
</p>
|
| 85 |
</div>
|
| 86 |
"""
|
| 87 |
+
|
| 88 |
+
ARTICLE = """
|
| 89 |
<div style="text-align: center; max-width: 650px; margin: 0 auto;">
|
| 90 |
<p>
|
| 91 |
Example art by <a href="https://pixabay.com/illustrations/watercolour-painting-art-effect-4799014/">Layers</a>
|
|
|
|
| 106 |
</div>
|
| 107 |
"""
|
| 108 |
|
| 109 |
+
CSS = '''
|
| 110 |
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
|
| 111 |
a {text-decoration-line: underline; font-weight: 600;}
|
| 112 |
.animate-spin {
|
| 113 |
animation: spin 1s linear infinite;
|
| 114 |
}
|
| 115 |
@keyframes spin {
|
| 116 |
+
from { transform: rotate(0deg); }
|
| 117 |
+
to { transform: rotate(360deg); }
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
}
|
| 119 |
#share-btn-container {
|
| 120 |
display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
|
|
|
|
| 134 |
}
|
| 135 |
'''
|
| 136 |
|
| 137 |
+
with gr.Blocks(css=CSS) as block:
|
| 138 |
with gr.Column(elem_id="col-container"):
|
| 139 |
+
gr.HTML(TITLE)
|
| 140 |
|
| 141 |
input_image = gr.Image(type='pil', elem_id="input-img")
|
| 142 |
+
input_model = gr.Dropdown(MODELS, value=MODELS[0], label='CLIP Model')
|
| 143 |
+
input_mode = gr.Radio(['best', 'fast'], value='best', label='Mode')
|
| 144 |
submit_btn = gr.Button("Submit")
|
| 145 |
output_text = gr.Textbox(label="Output", elem_id="output-txt")
|
| 146 |
|
|
|
|
| 149 |
loading_icon = gr.HTML(loading_icon_html, visible=False)
|
| 150 |
share_button = gr.Button("Share to community", elem_id="share-btn", visible=False)
|
| 151 |
|
| 152 |
+
examples=[['example01.jpg', MODELS[0], 'best'], ['example02.jpg', MODELS[0], 'best']]
|
| 153 |
+
ex = gr.Examples(
|
| 154 |
+
examples=examples,
|
| 155 |
+
fn=inference,
|
| 156 |
+
inputs=[input_image, input_model, input_mode],
|
| 157 |
+
outputs=[output_text, share_button, community_icon, loading_icon],
|
| 158 |
+
cache_examples=True,
|
| 159 |
+
run_on_click=True
|
| 160 |
+
)
|
| 161 |
ex.dataset.headers = [""]
|
| 162 |
|
| 163 |
+
gr.HTML(ARTICLE)
|
| 164 |
|
| 165 |
+
submit_btn.click(
|
| 166 |
+
fn=inference,
|
| 167 |
+
inputs=[input_image, input_model, input_mode],
|
| 168 |
+
outputs=[output_text, share_button, community_icon, loading_icon]
|
| 169 |
+
)
|
| 170 |
share_button.click(None, [], [], _js=share_js)
|
| 171 |
|
| 172 |
block.queue(max_size=32).launch(show_api=False)
|
requirements.txt
CHANGED
|
@@ -1,11 +1,14 @@
|
|
| 1 |
-
--extra-index-url https://download.pytorch.org/whl/
|
| 2 |
torch
|
| 3 |
torchvision
|
| 4 |
|
| 5 |
fairscale
|
| 6 |
ftfy
|
|
|
|
|
|
|
| 7 |
Pillow
|
| 8 |
timm
|
| 9 |
transformers==4.15.0
|
| 10 |
-
|
| 11 |
-
-
|
|
|
|
|
|
| 1 |
+
--extra-index-url https://download.pytorch.org/whl/cu117
|
| 2 |
torch
|
| 3 |
torchvision
|
| 4 |
|
| 5 |
fairscale
|
| 6 |
ftfy
|
| 7 |
+
gradio
|
| 8 |
+
huggingface-hub
|
| 9 |
Pillow
|
| 10 |
timm
|
| 11 |
transformers==4.15.0
|
| 12 |
+
open_clip_torch
|
| 13 |
+
clip-interrogator==0.3.1
|
| 14 |
+
-e git+https://github.com/pharmapsychotic/BLIP.git@lib#egg=blip
|