Spaces:
Sleeping
Sleeping
new updates with stremming
Browse files
app.py
CHANGED
|
@@ -3,7 +3,7 @@ import gradio as gr
|
|
| 3 |
import pandas as pd
|
| 4 |
import openvino_genai
|
| 5 |
from huggingface_hub import snapshot_download
|
| 6 |
-
from threading import Lock
|
| 7 |
import os
|
| 8 |
import numpy as np
|
| 9 |
import requests
|
|
@@ -14,10 +14,12 @@ import openvino as ov
|
|
| 14 |
import librosa
|
| 15 |
from googleapiclient.discovery import build
|
| 16 |
import gc
|
| 17 |
-
import tempfile
|
| 18 |
from PyPDF2 import PdfReader
|
| 19 |
from docx import Document
|
| 20 |
import textwrap
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
# Google API configuration
|
| 23 |
GOOGLE_API_KEY = "AIzaSyAo-1iW5MEZbc53DlEldtnUnDaYuTHUDH4"
|
|
@@ -34,7 +36,8 @@ class UnifiedAISystem:
|
|
| 34 |
self.mistral_pipe = None
|
| 35 |
self.internvl_pipe = None
|
| 36 |
self.whisper_pipe = None
|
| 37 |
-
self.current_document_text = None
|
|
|
|
| 38 |
self.initialize_models()
|
| 39 |
|
| 40 |
def initialize_models(self):
|
|
@@ -108,7 +111,65 @@ class UnifiedAISystem:
|
|
| 108 |
except Exception as e:
|
| 109 |
return False, f"❌ Error processing document: {str(e)}"
|
| 110 |
|
| 111 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
"""Analyze student data using AI with streaming"""
|
| 113 |
if not query or not query.strip():
|
| 114 |
yield "⚠️ Please enter a valid question"
|
|
@@ -131,23 +192,9 @@ class UnifiedAISystem:
|
|
| 131 |
4. Actionable recommendations
|
| 132 |
|
| 133 |
Format the output with clear headings"""
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
temperature=0.3,
|
| 138 |
-
top_p=0.9,
|
| 139 |
-
streaming=True
|
| 140 |
-
)
|
| 141 |
-
|
| 142 |
-
full_response = ""
|
| 143 |
-
try:
|
| 144 |
-
with self.pipe_lock:
|
| 145 |
-
token_iterator = self.mistral_pipe.generate(prompt, optimized_config, streaming=True)
|
| 146 |
-
for token in token_iterator:
|
| 147 |
-
full_response += token
|
| 148 |
-
yield full_response
|
| 149 |
-
except Exception as e:
|
| 150 |
-
yield f"❌ Error during analysis: {str(e)}"
|
| 151 |
|
| 152 |
def _prepare_data_summary(self, df):
|
| 153 |
"""Summarize the uploaded data"""
|
|
@@ -157,7 +204,7 @@ class UnifiedAISystem:
|
|
| 157 |
return summary
|
| 158 |
|
| 159 |
def analyze_image(self, image, url, prompt):
|
| 160 |
-
"""Analyze image with InternVL model"""
|
| 161 |
try:
|
| 162 |
if image is not None:
|
| 163 |
image_source = image
|
|
@@ -182,7 +229,9 @@ class UnifiedAISystem:
|
|
| 182 |
output = self.internvl_pipe.generate(prompt, image=image_tensor, max_new_tokens=100)
|
| 183 |
self.internvl_pipe.finish_chat()
|
| 184 |
|
|
|
|
| 185 |
return output
|
|
|
|
| 186 |
except Exception as e:
|
| 187 |
return f"❌ Error: {str(e)}"
|
| 188 |
|
|
@@ -255,10 +304,15 @@ class UnifiedAISystem:
|
|
| 255 |
print(f"Transcription error: {e}")
|
| 256 |
return "❌ Transcription failed - please try again"
|
| 257 |
|
| 258 |
-
def generate_lesson_plan(self, topic, duration, additional_instructions=""):
|
| 259 |
"""Generate a lesson plan based on document content"""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 260 |
if not self.current_document_text:
|
| 261 |
-
|
|
|
|
| 262 |
|
| 263 |
prompt = f"""As an expert educator, create a focused lesson plan using the provided content.
|
| 264 |
|
|
@@ -288,19 +342,9 @@ class UnifiedAISystem:
|
|
| 288 |
- Keep objectives measurable
|
| 289 |
- Use only document resources
|
| 290 |
- Make page references specific"""
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
max_new_tokens=1200,
|
| 295 |
-
temperature=0.4,
|
| 296 |
-
top_p=0.85
|
| 297 |
-
)
|
| 298 |
-
|
| 299 |
-
try:
|
| 300 |
-
with self.pipe_lock:
|
| 301 |
-
return self.mistral_pipe.generate(prompt, optimized_config)
|
| 302 |
-
except Exception as e:
|
| 303 |
-
return f"❌ Error generating lesson plan: {str(e)}"
|
| 304 |
|
| 305 |
def fetch_images(self, query: str, num: int = DEFAULT_NUM_IMAGES) -> list:
|
| 306 |
"""Fetch unique images by requesting different result pages"""
|
|
@@ -337,28 +381,6 @@ class UnifiedAISystem:
|
|
| 337 |
print(f"Error in image fetching: {e}")
|
| 338 |
return []
|
| 339 |
|
| 340 |
-
def stream_answer(self, message: str, max_tokens: int) -> str:
|
| 341 |
-
"""Stream tokens with typing indicator"""
|
| 342 |
-
optimized_config = openvino_genai.GenerationConfig(
|
| 343 |
-
max_new_tokens=max_tokens,
|
| 344 |
-
temperature=0.7,
|
| 345 |
-
top_p=0.9,
|
| 346 |
-
streaming=True
|
| 347 |
-
)
|
| 348 |
-
|
| 349 |
-
full_response = ""
|
| 350 |
-
try:
|
| 351 |
-
with self.pipe_lock:
|
| 352 |
-
token_iterator = self.mistral_pipe.generate(message, optimized_config, streaming=True)
|
| 353 |
-
for token in token_iterator:
|
| 354 |
-
full_response += token
|
| 355 |
-
yield full_response
|
| 356 |
-
# Periodic garbage collection
|
| 357 |
-
if len(full_response) % 20 == 0:
|
| 358 |
-
gc.collect()
|
| 359 |
-
except Exception as e:
|
| 360 |
-
yield f"❌ Error: {str(e)}"
|
| 361 |
-
|
| 362 |
# Initialize global object
|
| 363 |
ai_system = UnifiedAISystem()
|
| 364 |
|
|
@@ -601,7 +623,7 @@ with gr.Blocks(css=css, title="Unified EDU Assistant") as demo:
|
|
| 601 |
image_mode = gr.Checkbox(label="🖼️ Image Analysis", value=False, elem_classes="mode-checkbox")
|
| 602 |
lesson_mode = gr.Checkbox(label="📝 Lesson Planning", value=False, elem_classes="mode-checkbox")
|
| 603 |
|
| 604 |
-
# Dynamic input fields
|
| 605 |
with gr.Column() as chat_inputs:
|
| 606 |
include_images = gr.Checkbox(label="Include Visuals", value=True)
|
| 607 |
user_input = gr.Textbox(
|
|
@@ -627,6 +649,7 @@ with gr.Blocks(css=css, title="Unified EDU Assistant") as demo:
|
|
| 627 |
visible=True
|
| 628 |
)
|
| 629 |
|
|
|
|
| 630 |
with gr.Column(visible=False) as student_inputs:
|
| 631 |
file_upload = gr.File(label="CSV/Excel File", file_types=[".csv", ".xlsx"], type="filepath")
|
| 632 |
student_question = gr.Textbox(
|
|
@@ -636,6 +659,7 @@ with gr.Blocks(css=css, title="Unified EDU Assistant") as demo:
|
|
| 636 |
)
|
| 637 |
student_status = gr.Markdown("No file loaded")
|
| 638 |
|
|
|
|
| 639 |
with gr.Column(visible=False) as image_inputs:
|
| 640 |
image_upload = gr.Image(type="pil", label="Upload Image")
|
| 641 |
image_url = gr.Textbox(
|
|
@@ -649,7 +673,7 @@ with gr.Blocks(css=css, title="Unified EDU Assistant") as demo:
|
|
| 649 |
elem_id="question-input"
|
| 650 |
)
|
| 651 |
|
| 652 |
-
# Lesson planning
|
| 653 |
with gr.Column(visible=False) as lesson_inputs:
|
| 654 |
gr.Markdown("### 📚 Lesson Planning")
|
| 655 |
doc_upload = gr.File(
|
|
@@ -685,12 +709,6 @@ with gr.Blocks(css=css, title="Unified EDU Assistant") as demo:
|
|
| 685 |
mic_btn = gr.Button("Transcribe Voice", variant="secondary")
|
| 686 |
mic = gr.Audio(sources=["microphone"], type="numpy", label="Voice Input")
|
| 687 |
|
| 688 |
-
processing = gr.HTML("""
|
| 689 |
-
<div style="display: none;">
|
| 690 |
-
<div class="processing">🔮 Processing your request...</div>
|
| 691 |
-
</div>
|
| 692 |
-
""")
|
| 693 |
-
|
| 694 |
# Event handlers
|
| 695 |
def toggle_modes(chat, student, image, lesson):
|
| 696 |
return [
|
|
@@ -714,14 +732,15 @@ with gr.Blocks(css=css, title="Unified EDU Assistant") as demo:
|
|
| 714 |
"""Render chat history with images and proper formatting"""
|
| 715 |
rendered = []
|
| 716 |
for user_msg, bot_msg, image_links in history:
|
| 717 |
-
# Apply proper styling to messages
|
| 718 |
user_html = f"<div class='user-msg'>{user_msg}</div>"
|
| 719 |
|
| 720 |
-
#
|
| 721 |
-
|
| 722 |
-
|
|
|
|
|
|
|
| 723 |
else:
|
| 724 |
-
bot_html = f"<div class='bot-msg'>{
|
| 725 |
|
| 726 |
# Add images if available
|
| 727 |
if image_links:
|
|
@@ -734,106 +753,94 @@ with gr.Blocks(css=css, title="Unified EDU Assistant") as demo:
|
|
| 734 |
rendered.append((user_html, bot_html))
|
| 735 |
return rendered
|
| 736 |
|
| 737 |
-
def respond(message,
|
| 738 |
tokens, student_q, image_q, image_upload, image_url,
|
| 739 |
-
include_visuals, num_imgs):
|
| 740 |
-
|
| 741 |
-
|
| 742 |
-
|
| 743 |
-
|
| 744 |
-
|
| 745 |
-
|
| 746 |
-
|
| 747 |
-
|
| 748 |
-
|
|
|
|
| 749 |
elif image:
|
| 750 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 751 |
else:
|
| 752 |
-
|
| 753 |
|
| 754 |
-
#
|
| 755 |
typing_html = "<div class='typing-indicator'><div class='typing-dot'></div><div class='typing-dot'></div><div class='typing-dot'></div></div>"
|
| 756 |
-
|
| 757 |
-
yield render_history(chat_hist), ""
|
| 758 |
-
|
| 759 |
-
if chat:
|
| 760 |
-
# General chat mode
|
| 761 |
-
full_response = ""
|
| 762 |
-
for chunk in ai_system.stream_answer(message, tokens):
|
| 763 |
-
full_response = chunk
|
| 764 |
-
# Update with current response
|
| 765 |
-
chat_hist[-1] = (actual_question, full_response, [])
|
| 766 |
-
yield render_history(chat_hist), ""
|
| 767 |
-
|
| 768 |
-
# Fetch images if requested
|
| 769 |
-
image_links = []
|
| 770 |
-
if include_visuals and num_imgs > 0:
|
| 771 |
-
image_links = ai_system.fetch_images(message, num_imgs)
|
| 772 |
-
|
| 773 |
-
# Update with final response and images
|
| 774 |
-
chat_hist[-1] = (actual_question, full_response, image_links)
|
| 775 |
-
yield render_history(chat_hist), ""
|
| 776 |
-
|
| 777 |
-
elif student:
|
| 778 |
-
# Student analytics mode
|
| 779 |
-
if ai_system.current_df is None:
|
| 780 |
-
chat_hist[-1] = (actual_question, "⚠️ Please upload a student data file first", [])
|
| 781 |
-
yield render_history(chat_hist), ""
|
| 782 |
-
else:
|
| 783 |
-
response = ""
|
| 784 |
-
for chunk in ai_system.analyze_student_data(student_q):
|
| 785 |
-
response = chunk
|
| 786 |
-
chat_hist[-1] = (actual_question, response, [])
|
| 787 |
-
yield render_history(chat_hist), ""
|
| 788 |
|
| 789 |
-
|
| 790 |
-
|
| 791 |
-
if not image_upload and not image_url:
|
| 792 |
-
chat_hist[-1] = (actual_question, "⚠️ Please upload an image or enter a URL", [])
|
| 793 |
-
yield render_history(chat_hist), ""
|
| 794 |
-
else:
|
| 795 |
-
try:
|
| 796 |
-
result = ai_system.analyze_image(image_upload, image_url, image_q)
|
| 797 |
-
chat_hist[-1] = (actual_question, result, [])
|
| 798 |
-
yield render_history(chat_hist), ""
|
| 799 |
-
except Exception as e:
|
| 800 |
-
error_msg = f"❌ Error analyzing image: {str(e)}"
|
| 801 |
-
chat_hist[-1] = (actual_question, error_msg, [])
|
| 802 |
-
yield render_history(chat_hist), ""
|
| 803 |
-
|
| 804 |
-
# Trim history if too long
|
| 805 |
-
if len(chat_hist) > MAX_HISTORY_TURNS:
|
| 806 |
-
chat_hist = chat_hist[-MAX_HISTORY_TURNS:]
|
| 807 |
-
|
| 808 |
-
yield render_history(chat_hist), ""
|
| 809 |
-
|
| 810 |
-
def generate_lesson_plan(topic, duration, instructions, chat_hist):
|
| 811 |
-
if not topic:
|
| 812 |
-
return chat_hist, "⚠️ Please enter a lesson topic"
|
| 813 |
|
| 814 |
-
|
| 815 |
-
|
| 816 |
-
chat_hist.append((f"Generate lesson plan for: {topic}", processing_msg, []))
|
| 817 |
-
yield render_history(chat_hist), ""
|
| 818 |
|
| 819 |
-
|
| 820 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 821 |
|
| 822 |
-
|
| 823 |
-
|
| 824 |
-
|
| 825 |
-
<div class='lesson-title'>📝 Lesson Plan: {topic} ({duration} periods)</div>
|
| 826 |
-
{plan}
|
| 827 |
-
</div>
|
| 828 |
-
"""
|
| 829 |
|
| 830 |
-
#
|
| 831 |
-
|
| 832 |
-
|
| 833 |
-
|
| 834 |
-
|
| 835 |
-
)
|
| 836 |
-
yield render_history(chat_hist), ""
|
| 837 |
|
| 838 |
# Mode toggles
|
| 839 |
chat_mode.change(fn=toggle_modes, inputs=[chat_mode, student_mode, image_mode, lesson_mode],
|
|
@@ -851,10 +858,6 @@ with gr.Blocks(css=css, title="Unified EDU Assistant") as demo:
|
|
| 851 |
# Document upload handler
|
| 852 |
doc_upload.change(fn=process_document, inputs=doc_upload, outputs=doc_status)
|
| 853 |
|
| 854 |
-
# Voice transcription
|
| 855 |
-
def transcribe_audio(audio):
|
| 856 |
-
return ai_system.transcribe(audio)
|
| 857 |
-
|
| 858 |
mic_btn.click(fn=transcribe_audio, inputs=mic, outputs=user_input)
|
| 859 |
|
| 860 |
# Submit handler
|
|
@@ -863,17 +866,32 @@ with gr.Blocks(css=css, title="Unified EDU Assistant") as demo:
|
|
| 863 |
inputs=[
|
| 864 |
user_input, chat_state, chat_mode, student_mode, image_mode, lesson_mode,
|
| 865 |
max_tokens, student_question, image_question, image_upload, image_url,
|
| 866 |
-
include_images, num_images
|
|
|
|
| 867 |
],
|
| 868 |
-
outputs=[chatbot, user_input]
|
| 869 |
)
|
| 870 |
|
| 871 |
# Lesson plan generation button
|
| 872 |
generate_btn.click(
|
| 873 |
-
fn=
|
| 874 |
-
inputs=[
|
| 875 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 876 |
)
|
| 877 |
|
| 878 |
if __name__ == "__main__":
|
| 879 |
-
demo.launch(share=True, debug=True)
|
|
|
|
| 3 |
import pandas as pd
|
| 4 |
import openvino_genai
|
| 5 |
from huggingface_hub import snapshot_download
|
| 6 |
+
from threading import Lock, Event
|
| 7 |
import os
|
| 8 |
import numpy as np
|
| 9 |
import requests
|
|
|
|
| 14 |
import librosa
|
| 15 |
from googleapiclient.discovery import build
|
| 16 |
import gc
|
|
|
|
| 17 |
from PyPDF2 import PdfReader
|
| 18 |
from docx import Document
|
| 19 |
import textwrap
|
| 20 |
+
from queue import Queue, Empty
|
| 21 |
+
from concurrent.futures import ThreadPoolExecutor
|
| 22 |
+
from typing import Generator
|
| 23 |
|
| 24 |
# Google API configuration
|
| 25 |
GOOGLE_API_KEY = "AIzaSyAo-1iW5MEZbc53DlEldtnUnDaYuTHUDH4"
|
|
|
|
| 36 |
self.mistral_pipe = None
|
| 37 |
self.internvl_pipe = None
|
| 38 |
self.whisper_pipe = None
|
| 39 |
+
self.current_document_text = None
|
| 40 |
+
self.generation_executor = ThreadPoolExecutor(max_workers=3)
|
| 41 |
self.initialize_models()
|
| 42 |
|
| 43 |
def initialize_models(self):
|
|
|
|
| 111 |
except Exception as e:
|
| 112 |
return False, f"❌ Error processing document: {str(e)}"
|
| 113 |
|
| 114 |
+
def generate_text_stream(self, prompt: str, max_tokens: int) -> Generator[str, None, None]:
|
| 115 |
+
"""Unified text generation with queued token streaming"""
|
| 116 |
+
start_time = time.time()
|
| 117 |
+
response_queue = Queue()
|
| 118 |
+
completion_event = Event()
|
| 119 |
+
error = [None] # Use list to capture exception from thread
|
| 120 |
+
|
| 121 |
+
optimized_config = openvino_genai.GenerationConfig(
|
| 122 |
+
max_new_tokens=max_tokens,
|
| 123 |
+
temperature=0.3,
|
| 124 |
+
top_p=0.9,
|
| 125 |
+
streaming=True,
|
| 126 |
+
streaming_interval=5 # Batch tokens in groups of 5
|
| 127 |
+
)
|
| 128 |
+
|
| 129 |
+
def callback(tokens): # Accepts multiple tokens
|
| 130 |
+
response_queue.put("".join(tokens))
|
| 131 |
+
return openvino_genai.StreamingStatus.RUNNING
|
| 132 |
+
|
| 133 |
+
def generate():
|
| 134 |
+
try:
|
| 135 |
+
with self.pipe_lock:
|
| 136 |
+
self.mistral_pipe.generate(prompt, optimized_config, callback)
|
| 137 |
+
except Exception as e:
|
| 138 |
+
error[0] = str(e)
|
| 139 |
+
finally:
|
| 140 |
+
completion_event.set()
|
| 141 |
+
|
| 142 |
+
# Submit generation task to executor
|
| 143 |
+
self.generation_executor.submit(generate)
|
| 144 |
+
|
| 145 |
+
accumulated = []
|
| 146 |
+
token_count = 0
|
| 147 |
+
last_gc = time.time()
|
| 148 |
+
|
| 149 |
+
while not completion_event.is_set() or not response_queue.empty():
|
| 150 |
+
if error[0]:
|
| 151 |
+
yield f"❌ Error: {error[0]}"
|
| 152 |
+
print(f"Stream generation time: {time.time() - start_time:.2f} seconds")
|
| 153 |
+
return
|
| 154 |
+
|
| 155 |
+
try:
|
| 156 |
+
token_batch = response_queue.get(timeout=0.1)
|
| 157 |
+
accumulated.append(token_batch)
|
| 158 |
+
token_count += len(token_batch)
|
| 159 |
+
yield "".join(accumulated)
|
| 160 |
+
|
| 161 |
+
# Periodic garbage collection
|
| 162 |
+
if time.time() - last_gc > 2.0:
|
| 163 |
+
gc.collect()
|
| 164 |
+
last_gc = time.time()
|
| 165 |
+
except Empty:
|
| 166 |
+
continue
|
| 167 |
+
|
| 168 |
+
print(f"Generated {token_count} tokens in {time.time() - start_time:.2f} seconds "
|
| 169 |
+
f"({token_count/(time.time() - start_time):.2f} tokens/sec)")
|
| 170 |
+
yield "".join(accumulated)
|
| 171 |
+
|
| 172 |
+
def analyze_student_data(self, query, max_tokens=500):
|
| 173 |
"""Analyze student data using AI with streaming"""
|
| 174 |
if not query or not query.strip():
|
| 175 |
yield "⚠️ Please enter a valid question"
|
|
|
|
| 192 |
4. Actionable recommendations
|
| 193 |
|
| 194 |
Format the output with clear headings"""
|
| 195 |
+
|
| 196 |
+
# Use unified streaming generator
|
| 197 |
+
yield from self.generate_text_stream(prompt, max_tokens)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 198 |
|
| 199 |
def _prepare_data_summary(self, df):
|
| 200 |
"""Summarize the uploaded data"""
|
|
|
|
| 204 |
return summary
|
| 205 |
|
| 206 |
def analyze_image(self, image, url, prompt):
|
| 207 |
+
"""Analyze image with InternVL model (synchronous, no streaming)"""
|
| 208 |
try:
|
| 209 |
if image is not None:
|
| 210 |
image_source = image
|
|
|
|
| 229 |
output = self.internvl_pipe.generate(prompt, image=image_tensor, max_new_tokens=100)
|
| 230 |
self.internvl_pipe.finish_chat()
|
| 231 |
|
| 232 |
+
# output is a VLMDecodedResults; rest of the code expects a string
|
| 233 |
return output
|
| 234 |
+
|
| 235 |
except Exception as e:
|
| 236 |
return f"❌ Error: {str(e)}"
|
| 237 |
|
|
|
|
| 304 |
print(f"Transcription error: {e}")
|
| 305 |
return "❌ Transcription failed - please try again"
|
| 306 |
|
| 307 |
+
def generate_lesson_plan(self, topic, duration, additional_instructions="", max_tokens=1200):
|
| 308 |
"""Generate a lesson plan based on document content"""
|
| 309 |
+
if not topic:
|
| 310 |
+
yield "⚠️ Please enter a lesson topic"
|
| 311 |
+
return
|
| 312 |
+
|
| 313 |
if not self.current_document_text:
|
| 314 |
+
yield "⚠️ Please upload and process a document first"
|
| 315 |
+
return
|
| 316 |
|
| 317 |
prompt = f"""As an expert educator, create a focused lesson plan using the provided content.
|
| 318 |
|
|
|
|
| 342 |
- Keep objectives measurable
|
| 343 |
- Use only document resources
|
| 344 |
- Make page references specific"""
|
| 345 |
+
|
| 346 |
+
# Use unified streaming generator
|
| 347 |
+
yield from self.generate_text_stream(prompt, max_tokens)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 348 |
|
| 349 |
def fetch_images(self, query: str, num: int = DEFAULT_NUM_IMAGES) -> list:
|
| 350 |
"""Fetch unique images by requesting different result pages"""
|
|
|
|
| 381 |
print(f"Error in image fetching: {e}")
|
| 382 |
return []
|
| 383 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 384 |
# Initialize global object
|
| 385 |
ai_system = UnifiedAISystem()
|
| 386 |
|
|
|
|
| 623 |
image_mode = gr.Checkbox(label="🖼️ Image Analysis", value=False, elem_classes="mode-checkbox")
|
| 624 |
lesson_mode = gr.Checkbox(label="📝 Lesson Planning", value=False, elem_classes="mode-checkbox")
|
| 625 |
|
| 626 |
+
# Dynamic input fields (General Chat by default)
|
| 627 |
with gr.Column() as chat_inputs:
|
| 628 |
include_images = gr.Checkbox(label="Include Visuals", value=True)
|
| 629 |
user_input = gr.Textbox(
|
|
|
|
| 649 |
visible=True
|
| 650 |
)
|
| 651 |
|
| 652 |
+
# Student inputs
|
| 653 |
with gr.Column(visible=False) as student_inputs:
|
| 654 |
file_upload = gr.File(label="CSV/Excel File", file_types=[".csv", ".xlsx"], type="filepath")
|
| 655 |
student_question = gr.Textbox(
|
|
|
|
| 659 |
)
|
| 660 |
student_status = gr.Markdown("No file loaded")
|
| 661 |
|
| 662 |
+
# Image analysis inputs
|
| 663 |
with gr.Column(visible=False) as image_inputs:
|
| 664 |
image_upload = gr.Image(type="pil", label="Upload Image")
|
| 665 |
image_url = gr.Textbox(
|
|
|
|
| 673 |
elem_id="question-input"
|
| 674 |
)
|
| 675 |
|
| 676 |
+
# Lesson planning inputs
|
| 677 |
with gr.Column(visible=False) as lesson_inputs:
|
| 678 |
gr.Markdown("### 📚 Lesson Planning")
|
| 679 |
doc_upload = gr.File(
|
|
|
|
| 709 |
mic_btn = gr.Button("Transcribe Voice", variant="secondary")
|
| 710 |
mic = gr.Audio(sources=["microphone"], type="numpy", label="Voice Input")
|
| 711 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 712 |
# Event handlers
|
| 713 |
def toggle_modes(chat, student, image, lesson):
|
| 714 |
return [
|
|
|
|
| 732 |
"""Render chat history with images and proper formatting"""
|
| 733 |
rendered = []
|
| 734 |
for user_msg, bot_msg, image_links in history:
|
|
|
|
| 735 |
user_html = f"<div class='user-msg'>{user_msg}</div>"
|
| 736 |
|
| 737 |
+
# Ensure bot_msg is a string before checking substrings
|
| 738 |
+
bot_text = str(bot_msg)
|
| 739 |
+
|
| 740 |
+
if "Lesson Plan:" in bot_text:
|
| 741 |
+
bot_html = f"<div class='lesson-plan'>{bot_text}</div>"
|
| 742 |
else:
|
| 743 |
+
bot_html = f"<div class='bot-msg'>{bot_text}</div>"
|
| 744 |
|
| 745 |
# Add images if available
|
| 746 |
if image_links:
|
|
|
|
| 753 |
rendered.append((user_html, bot_html))
|
| 754 |
return rendered
|
| 755 |
|
| 756 |
+
def respond(message, history, chat, student, image, lesson,
|
| 757 |
tokens, student_q, image_q, image_upload, image_url,
|
| 758 |
+
include_visuals, num_imgs, topic, duration, additional):
|
| 759 |
+
"""
|
| 760 |
+
1. Use actual_message (depending on mode) instead of raw `message`.
|
| 761 |
+
2. Convert any non‐string Bot response (like VLMDecodedResults) to str().
|
| 762 |
+
3. Disable the input box during streaming, then re-enable it at the end.
|
| 763 |
+
"""
|
| 764 |
+
updated_history = list(history)
|
| 765 |
+
|
| 766 |
+
# Determine which prompt to actually send
|
| 767 |
+
if student:
|
| 768 |
+
actual_message = student_q
|
| 769 |
elif image:
|
| 770 |
+
actual_message = image_q
|
| 771 |
+
elif lesson:
|
| 772 |
+
actual_message = f"Generate lesson plan for: {topic} ({duration} periods)"
|
| 773 |
+
if additional:
|
| 774 |
+
actual_message += f"\nAdditional: {additional}"
|
| 775 |
else:
|
| 776 |
+
actual_message = message
|
| 777 |
|
| 778 |
+
# Add a “typing” placeholder entry using actual_message
|
| 779 |
typing_html = "<div class='typing-indicator'><div class='typing-dot'></div><div class='typing-dot'></div><div class='typing-dot'></div></div>"
|
| 780 |
+
updated_history.append((actual_message, typing_html, []))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 781 |
|
| 782 |
+
# First yield: clear & disable the input box while streaming
|
| 783 |
+
yield render_history(updated_history), gr.update(value="", interactive=False), updated_history
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 784 |
|
| 785 |
+
full_response = ""
|
| 786 |
+
images = []
|
|
|
|
|
|
|
| 787 |
|
| 788 |
+
try:
|
| 789 |
+
if chat:
|
| 790 |
+
# General chat mode → streaming
|
| 791 |
+
for chunk in ai_system.generate_text_stream(actual_message, tokens):
|
| 792 |
+
full_response = chunk
|
| 793 |
+
updated_history[-1] = (actual_message, full_response, [])
|
| 794 |
+
yield render_history(updated_history), gr.update(value="", interactive=False), updated_history
|
| 795 |
+
|
| 796 |
+
if include_visuals:
|
| 797 |
+
images = ai_system.fetch_images(actual_message, num_imgs)
|
| 798 |
+
|
| 799 |
+
elif student:
|
| 800 |
+
# Student analytics mode → streaming
|
| 801 |
+
if ai_system.current_df is None:
|
| 802 |
+
full_response = "⚠️ Please upload a student data file first"
|
| 803 |
+
else:
|
| 804 |
+
for chunk in ai_system.analyze_student_data(student_q, tokens):
|
| 805 |
+
full_response = chunk
|
| 806 |
+
updated_history[-1] = (actual_message, full_response, [])
|
| 807 |
+
yield render_history(updated_history), gr.update(value="", interactive=False), updated_history
|
| 808 |
+
|
| 809 |
+
elif image:
|
| 810 |
+
# Image analysis mode → synchronous
|
| 811 |
+
if (not image_upload) and (not image_url):
|
| 812 |
+
full_response = "⚠️ Please upload an image or enter a URL"
|
| 813 |
+
else:
|
| 814 |
+
# ai_system.analyze_image(...) returns a VLMDecodedResults, not a string
|
| 815 |
+
result_obj = ai_system.analyze_image(image_upload, image_url, image_q)
|
| 816 |
+
full_response = str(result_obj)
|
| 817 |
+
|
| 818 |
+
elif lesson:
|
| 819 |
+
# Lesson planning mode → streaming
|
| 820 |
+
if not topic:
|
| 821 |
+
full_response = "⚠️ Please enter a lesson topic"
|
| 822 |
+
else:
|
| 823 |
+
duration = int(duration) if duration else 5
|
| 824 |
+
for chunk in ai_system.generate_lesson_plan(topic, duration, additional, tokens):
|
| 825 |
+
full_response = chunk
|
| 826 |
+
updated_history[-1] = (actual_message, full_response, [])
|
| 827 |
+
yield render_history(updated_history), gr.update(value="", interactive=False), updated_history
|
| 828 |
+
|
| 829 |
+
# Final update: put in images (if any), trim history, and re-enable input
|
| 830 |
+
updated_history[-1] = (actual_message, full_response, images)
|
| 831 |
+
if len(updated_history) > MAX_HISTORY_TURNS:
|
| 832 |
+
updated_history = updated_history[-MAX_HISTORY_TURNS:]
|
| 833 |
|
| 834 |
+
except Exception as e:
|
| 835 |
+
error_msg = f"❌ Error: {str(e)}"
|
| 836 |
+
updated_history[-1] = (actual_message, error_msg, [])
|
|
|
|
|
|
|
|
|
|
|
|
|
| 837 |
|
| 838 |
+
# Final yield: clear & re-enable the input box
|
| 839 |
+
yield render_history(updated_history), gr.update(value="", interactive=True), updated_history
|
| 840 |
+
|
| 841 |
+
# Voice transcription
|
| 842 |
+
def transcribe_audio(audio):
|
| 843 |
+
return ai_system.transcribe(audio)
|
|
|
|
| 844 |
|
| 845 |
# Mode toggles
|
| 846 |
chat_mode.change(fn=toggle_modes, inputs=[chat_mode, student_mode, image_mode, lesson_mode],
|
|
|
|
| 858 |
# Document upload handler
|
| 859 |
doc_upload.change(fn=process_document, inputs=doc_upload, outputs=doc_status)
|
| 860 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 861 |
mic_btn.click(fn=transcribe_audio, inputs=mic, outputs=user_input)
|
| 862 |
|
| 863 |
# Submit handler
|
|
|
|
| 866 |
inputs=[
|
| 867 |
user_input, chat_state, chat_mode, student_mode, image_mode, lesson_mode,
|
| 868 |
max_tokens, student_question, image_question, image_upload, image_url,
|
| 869 |
+
include_images, num_images,
|
| 870 |
+
topic_input, duration_input, additional_instructions
|
| 871 |
],
|
| 872 |
+
outputs=[chatbot, user_input, chat_state]
|
| 873 |
)
|
| 874 |
|
| 875 |
# Lesson plan generation button
|
| 876 |
generate_btn.click(
|
| 877 |
+
fn=respond,
|
| 878 |
+
inputs=[
|
| 879 |
+
gr.Textbox(value="Generate lesson plan", visible=False), # Hidden message
|
| 880 |
+
chat_state,
|
| 881 |
+
chat_mode, student_mode, image_mode, lesson_mode,
|
| 882 |
+
max_tokens,
|
| 883 |
+
gr.Textbox(visible=False), # student_q
|
| 884 |
+
gr.Textbox(visible=False), # image_q
|
| 885 |
+
gr.Image(visible=False), # image_upload
|
| 886 |
+
gr.Textbox(visible=False), # image_url
|
| 887 |
+
gr.Checkbox(visible=False), # include_visuals
|
| 888 |
+
gr.Slider(visible=False), # num_imgs
|
| 889 |
+
topic_input, # Pass topic
|
| 890 |
+
duration_input, # Pass duration
|
| 891 |
+
additional_instructions # Pass additional instructions
|
| 892 |
+
],
|
| 893 |
+
outputs=[chatbot, user_input, chat_state]
|
| 894 |
)
|
| 895 |
|
| 896 |
if __name__ == "__main__":
|
| 897 |
+
demo.launch(share=True, debug=True)
|