Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import gradio as gr
|
3 |
+
|
4 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
5 |
+
|
6 |
+
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained("ProtectAI/deberta-v3-base-prompt-injection")
|
8 |
+
model = AutoModelForSequenceClassification.from_pretrained("ProtectAI/deberta-v3-base-prompt-injection")
|
9 |
+
|
10 |
+
classifier = pipeline(
|
11 |
+
"text-classification",
|
12 |
+
model=model,
|
13 |
+
tokenizer=tokenizer,
|
14 |
+
truncation=True,
|
15 |
+
max_length=512,
|
16 |
+
device=torch.device("cuda" if torch.cuda.is_available() else "cpu"),
|
17 |
+
)
|
18 |
+
|
19 |
+
def predict(user_input: str):
|
20 |
+
|
21 |
+
return classifier(user_input)
|
22 |
+
|
23 |
+
|
24 |
+
textbox = gr.Textbox(placeholder="Enter user input presented for injection attack classification", lines=12)
|
25 |
+
|
26 |
+
interface = gr.Interface(
|
27 |
+
inputs=textbox, fn=predict, outputs="text",
|
28 |
+
title="Injection Attack Classifier",
|
29 |
+
description="This web API flags if the text presented as input to an LLM qualifies to be an injection attack",
|
30 |
+
allow_flagging="manual", flagging_options=["Useful", "Not Useful"]
|
31 |
+
)
|
32 |
+
|
33 |
+
with gr.Blocks() as demo:
|
34 |
+
interface.launch()
|
35 |
+
|
36 |
+
demo.queue(concurrency_count=4)
|
37 |
+
demo.launch()
|