DeepGazeIIE( (models): ModuleList( (0): DeepGazeIIIMixture( (features): FeatureExtractor( (features): RGBShapeNetC( (0): Normalizer() (1): Sequential( (module): ResNet( (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False) (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False) (layer1): Sequential( (0): Bottleneck( (conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (downsample): Sequential( (0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (1): Bottleneck( (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) ) (2): Bottleneck( (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) ) ) (layer2): Sequential( (0): Bottleneck( (conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (downsample): Sequential( (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False) (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (1): Bottleneck( (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) ) (2): Bottleneck( (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) ) (3): Bottleneck( (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) ) ) (layer3): Sequential( (0): Bottleneck( (conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (downsample): Sequential( (0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False) (1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (1): Bottleneck( (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) ) (2): Bottleneck( (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) ) (3): Bottleneck( (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) ) (4): Bottleneck( (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) ) (5): Bottleneck( (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) ) ) (layer4): Sequential( (0): Bottleneck( (conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (downsample): Sequential( (0): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False) (1): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (1): Bottleneck( (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) ) (2): Bottleneck( (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) ) ) (avgpool): AdaptiveAvgPool2d(output_size=(1, 1)) (fc): Linear(in_features=2048, out_features=1000, bias=True) ) ) ) ) (saliency_networks): ModuleList( (0): Sequential( (layernorm0): LayerNorm(2048, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2048, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (1): Sequential( (layernorm0): LayerNorm(2048, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2048, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (2): Sequential( (layernorm0): LayerNorm(2048, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2048, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (3): Sequential( (layernorm0): LayerNorm(2048, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2048, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (4): Sequential( (layernorm0): LayerNorm(2048, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2048, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (5): Sequential( (layernorm0): LayerNorm(2048, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2048, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (6): Sequential( (layernorm0): LayerNorm(2048, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2048, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (7): Sequential( (layernorm0): LayerNorm(2048, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2048, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (8): Sequential( (layernorm0): LayerNorm(2048, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2048, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (9): Sequential( (layernorm0): LayerNorm(2048, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2048, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (10): Sequential( (layernorm0): LayerNorm(2048, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2048, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (11): Sequential( (layernorm0): LayerNorm(2048, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2048, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (12): Sequential( (layernorm0): LayerNorm(2048, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2048, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (13): Sequential( (layernorm0): LayerNorm(2048, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2048, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (14): Sequential( (layernorm0): LayerNorm(2048, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2048, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (15): Sequential( (layernorm0): LayerNorm(2048, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2048, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (16): Sequential( (layernorm0): LayerNorm(2048, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2048, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (17): Sequential( (layernorm0): LayerNorm(2048, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2048, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (18): Sequential( (layernorm0): LayerNorm(2048, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2048, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (19): Sequential( (layernorm0): LayerNorm(2048, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2048, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (20): Sequential( (layernorm0): LayerNorm(2048, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2048, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (21): Sequential( (layernorm0): LayerNorm(2048, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2048, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (22): Sequential( (layernorm0): LayerNorm(2048, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2048, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (23): Sequential( (layernorm0): LayerNorm(2048, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2048, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (24): Sequential( (layernorm0): LayerNorm(2048, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2048, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (25): Sequential( (layernorm0): LayerNorm(2048, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2048, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (26): Sequential( (layernorm0): LayerNorm(2048, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2048, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (27): Sequential( (layernorm0): LayerNorm(2048, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2048, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (28): Sequential( (layernorm0): LayerNorm(2048, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2048, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (29): Sequential( (layernorm0): LayerNorm(2048, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2048, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) ) (scanpath_networks): ModuleList( (0): None (1): None (2): None (3): None (4): None (5): None (6): None (7): None (8): None (9): None (10): None (11): None (12): None (13): None (14): None (15): None (16): None (17): None (18): None (19): None (20): None (21): None (22): None (23): None (24): None (25): None (26): None (27): None (28): None (29): None ) (fixation_selection_networks): ModuleList( (0): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (1): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (2): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (3): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (4): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (5): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (6): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (7): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (8): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (9): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (10): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (11): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (12): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (13): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (14): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (15): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (16): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (17): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (18): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (19): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (20): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (21): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (22): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (23): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (24): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (25): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (26): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (27): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (28): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (29): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) ) (finalizers): ModuleList( (0): Finalizer( (gauss): GaussianFilterNd() ) (1): Finalizer( (gauss): GaussianFilterNd() ) (2): Finalizer( (gauss): GaussianFilterNd() ) (3): Finalizer( (gauss): GaussianFilterNd() ) (4): Finalizer( (gauss): GaussianFilterNd() ) (5): Finalizer( (gauss): GaussianFilterNd() ) (6): Finalizer( (gauss): GaussianFilterNd() ) (7): Finalizer( (gauss): GaussianFilterNd() ) (8): Finalizer( (gauss): GaussianFilterNd() ) (9): Finalizer( (gauss): GaussianFilterNd() ) (10): Finalizer( (gauss): GaussianFilterNd() ) (11): Finalizer( (gauss): GaussianFilterNd() ) (12): Finalizer( (gauss): GaussianFilterNd() ) (13): Finalizer( (gauss): GaussianFilterNd() ) (14): Finalizer( (gauss): GaussianFilterNd() ) (15): Finalizer( (gauss): GaussianFilterNd() ) (16): Finalizer( (gauss): GaussianFilterNd() ) (17): Finalizer( (gauss): GaussianFilterNd() ) (18): Finalizer( (gauss): GaussianFilterNd() ) (19): Finalizer( (gauss): GaussianFilterNd() ) (20): Finalizer( (gauss): GaussianFilterNd() ) (21): Finalizer( (gauss): GaussianFilterNd() ) (22): Finalizer( (gauss): GaussianFilterNd() ) (23): Finalizer( (gauss): GaussianFilterNd() ) (24): Finalizer( (gauss): GaussianFilterNd() ) (25): Finalizer( (gauss): GaussianFilterNd() ) (26): Finalizer( (gauss): GaussianFilterNd() ) (27): Finalizer( (gauss): GaussianFilterNd() ) (28): Finalizer( (gauss): GaussianFilterNd() ) (29): Finalizer( (gauss): GaussianFilterNd() ) ) ) (1): DeepGazeIIIMixture( (features): FeatureExtractor( (features): RGBEfficientNetB5( (0): Normalizer() (1): EfficientNet( (_conv_stem): Conv2dStaticSamePadding( 3, 48, kernel_size=(3, 3), stride=(2, 2), bias=False (static_padding): ZeroPad2d(padding=(0, 1, 0, 1), value=0.0) ) (_bn0): BatchNorm2d(48, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_blocks): ModuleList( (0): MBConvBlock( (_depthwise_conv): Conv2dStaticSamePadding( 48, 48, kernel_size=(3, 3), stride=[1, 1], groups=48, bias=False (static_padding): ZeroPad2d(padding=(1, 1, 1, 1), value=0.0) ) (_bn1): BatchNorm2d(48, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_se_reduce): Conv2dStaticSamePadding( 48, 12, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_se_expand): Conv2dStaticSamePadding( 12, 48, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_project_conv): Conv2dStaticSamePadding( 48, 24, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn2): BatchNorm2d(24, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_swish): MemoryEfficientSwish() ) (1): MBConvBlock( (_depthwise_conv): Conv2dStaticSamePadding( 24, 24, kernel_size=(3, 3), stride=(1, 1), groups=24, bias=False (static_padding): ZeroPad2d(padding=(1, 1, 1, 1), value=0.0) ) (_bn1): BatchNorm2d(24, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_se_reduce): Conv2dStaticSamePadding( 24, 6, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_se_expand): Conv2dStaticSamePadding( 6, 24, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_project_conv): Conv2dStaticSamePadding( 24, 24, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn2): BatchNorm2d(24, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_swish): MemoryEfficientSwish() ) (2): MBConvBlock( (_depthwise_conv): Conv2dStaticSamePadding( 24, 24, kernel_size=(3, 3), stride=(1, 1), groups=24, bias=False (static_padding): ZeroPad2d(padding=(1, 1, 1, 1), value=0.0) ) (_bn1): BatchNorm2d(24, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_se_reduce): Conv2dStaticSamePadding( 24, 6, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_se_expand): Conv2dStaticSamePadding( 6, 24, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_project_conv): Conv2dStaticSamePadding( 24, 24, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn2): BatchNorm2d(24, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_swish): MemoryEfficientSwish() ) (3): MBConvBlock( (_expand_conv): Conv2dStaticSamePadding( 24, 144, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn0): BatchNorm2d(144, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_depthwise_conv): Conv2dStaticSamePadding( 144, 144, kernel_size=(3, 3), stride=[2, 2], groups=144, bias=False (static_padding): ZeroPad2d(padding=(0, 1, 0, 1), value=0.0) ) (_bn1): BatchNorm2d(144, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_se_reduce): Conv2dStaticSamePadding( 144, 6, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_se_expand): Conv2dStaticSamePadding( 6, 144, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_project_conv): Conv2dStaticSamePadding( 144, 40, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn2): BatchNorm2d(40, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_swish): MemoryEfficientSwish() ) (4): MBConvBlock( (_expand_conv): Conv2dStaticSamePadding( 40, 240, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn0): BatchNorm2d(240, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_depthwise_conv): Conv2dStaticSamePadding( 240, 240, kernel_size=(3, 3), stride=(1, 1), groups=240, bias=False (static_padding): ZeroPad2d(padding=(1, 1, 1, 1), value=0.0) ) (_bn1): BatchNorm2d(240, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_se_reduce): Conv2dStaticSamePadding( 240, 10, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_se_expand): Conv2dStaticSamePadding( 10, 240, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_project_conv): Conv2dStaticSamePadding( 240, 40, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn2): BatchNorm2d(40, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_swish): MemoryEfficientSwish() ) (5): MBConvBlock( (_expand_conv): Conv2dStaticSamePadding( 40, 240, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn0): BatchNorm2d(240, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_depthwise_conv): Conv2dStaticSamePadding( 240, 240, kernel_size=(3, 3), stride=(1, 1), groups=240, bias=False (static_padding): ZeroPad2d(padding=(1, 1, 1, 1), value=0.0) ) (_bn1): BatchNorm2d(240, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_se_reduce): Conv2dStaticSamePadding( 240, 10, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_se_expand): Conv2dStaticSamePadding( 10, 240, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_project_conv): Conv2dStaticSamePadding( 240, 40, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn2): BatchNorm2d(40, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_swish): MemoryEfficientSwish() ) (6): MBConvBlock( (_expand_conv): Conv2dStaticSamePadding( 40, 240, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn0): BatchNorm2d(240, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_depthwise_conv): Conv2dStaticSamePadding( 240, 240, kernel_size=(3, 3), stride=(1, 1), groups=240, bias=False (static_padding): ZeroPad2d(padding=(1, 1, 1, 1), value=0.0) ) (_bn1): BatchNorm2d(240, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_se_reduce): Conv2dStaticSamePadding( 240, 10, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_se_expand): Conv2dStaticSamePadding( 10, 240, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_project_conv): Conv2dStaticSamePadding( 240, 40, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn2): BatchNorm2d(40, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_swish): MemoryEfficientSwish() ) (7): MBConvBlock( (_expand_conv): Conv2dStaticSamePadding( 40, 240, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn0): BatchNorm2d(240, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_depthwise_conv): Conv2dStaticSamePadding( 240, 240, kernel_size=(3, 3), stride=(1, 1), groups=240, bias=False (static_padding): ZeroPad2d(padding=(1, 1, 1, 1), value=0.0) ) (_bn1): BatchNorm2d(240, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_se_reduce): Conv2dStaticSamePadding( 240, 10, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_se_expand): Conv2dStaticSamePadding( 10, 240, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_project_conv): Conv2dStaticSamePadding( 240, 40, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn2): BatchNorm2d(40, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_swish): MemoryEfficientSwish() ) (8): MBConvBlock( (_expand_conv): Conv2dStaticSamePadding( 40, 240, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn0): BatchNorm2d(240, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_depthwise_conv): Conv2dStaticSamePadding( 240, 240, kernel_size=(5, 5), stride=[2, 2], groups=240, bias=False (static_padding): ZeroPad2d(padding=(1, 2, 1, 2), value=0.0) ) (_bn1): BatchNorm2d(240, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_se_reduce): Conv2dStaticSamePadding( 240, 10, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_se_expand): Conv2dStaticSamePadding( 10, 240, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_project_conv): Conv2dStaticSamePadding( 240, 64, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn2): BatchNorm2d(64, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_swish): MemoryEfficientSwish() ) (9): MBConvBlock( (_expand_conv): Conv2dStaticSamePadding( 64, 384, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn0): BatchNorm2d(384, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_depthwise_conv): Conv2dStaticSamePadding( 384, 384, kernel_size=(5, 5), stride=(1, 1), groups=384, bias=False (static_padding): ZeroPad2d(padding=(2, 2, 2, 2), value=0.0) ) (_bn1): BatchNorm2d(384, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_se_reduce): Conv2dStaticSamePadding( 384, 16, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_se_expand): Conv2dStaticSamePadding( 16, 384, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_project_conv): Conv2dStaticSamePadding( 384, 64, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn2): BatchNorm2d(64, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_swish): MemoryEfficientSwish() ) (10): MBConvBlock( (_expand_conv): Conv2dStaticSamePadding( 64, 384, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn0): BatchNorm2d(384, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_depthwise_conv): Conv2dStaticSamePadding( 384, 384, kernel_size=(5, 5), stride=(1, 1), groups=384, bias=False (static_padding): ZeroPad2d(padding=(2, 2, 2, 2), value=0.0) ) (_bn1): BatchNorm2d(384, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_se_reduce): Conv2dStaticSamePadding( 384, 16, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_se_expand): Conv2dStaticSamePadding( 16, 384, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_project_conv): Conv2dStaticSamePadding( 384, 64, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn2): BatchNorm2d(64, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_swish): MemoryEfficientSwish() ) (11): MBConvBlock( (_expand_conv): Conv2dStaticSamePadding( 64, 384, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn0): BatchNorm2d(384, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_depthwise_conv): Conv2dStaticSamePadding( 384, 384, kernel_size=(5, 5), stride=(1, 1), groups=384, bias=False (static_padding): ZeroPad2d(padding=(2, 2, 2, 2), value=0.0) ) (_bn1): BatchNorm2d(384, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_se_reduce): Conv2dStaticSamePadding( 384, 16, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_se_expand): Conv2dStaticSamePadding( 16, 384, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_project_conv): Conv2dStaticSamePadding( 384, 64, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn2): BatchNorm2d(64, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_swish): MemoryEfficientSwish() ) (12): MBConvBlock( (_expand_conv): Conv2dStaticSamePadding( 64, 384, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn0): BatchNorm2d(384, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_depthwise_conv): Conv2dStaticSamePadding( 384, 384, kernel_size=(5, 5), stride=(1, 1), groups=384, bias=False (static_padding): ZeroPad2d(padding=(2, 2, 2, 2), value=0.0) ) (_bn1): BatchNorm2d(384, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_se_reduce): Conv2dStaticSamePadding( 384, 16, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_se_expand): Conv2dStaticSamePadding( 16, 384, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_project_conv): Conv2dStaticSamePadding( 384, 64, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn2): BatchNorm2d(64, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_swish): MemoryEfficientSwish() ) (13): MBConvBlock( (_expand_conv): Conv2dStaticSamePadding( 64, 384, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn0): BatchNorm2d(384, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_depthwise_conv): Conv2dStaticSamePadding( 384, 384, kernel_size=(3, 3), stride=[2, 2], groups=384, bias=False (static_padding): ZeroPad2d(padding=(0, 1, 0, 1), value=0.0) ) (_bn1): BatchNorm2d(384, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_se_reduce): Conv2dStaticSamePadding( 384, 16, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_se_expand): Conv2dStaticSamePadding( 16, 384, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_project_conv): Conv2dStaticSamePadding( 384, 128, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn2): BatchNorm2d(128, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_swish): MemoryEfficientSwish() ) (14): MBConvBlock( (_expand_conv): Conv2dStaticSamePadding( 128, 768, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn0): BatchNorm2d(768, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_depthwise_conv): Conv2dStaticSamePadding( 768, 768, kernel_size=(3, 3), stride=(1, 1), groups=768, bias=False (static_padding): ZeroPad2d(padding=(1, 1, 1, 1), value=0.0) ) (_bn1): BatchNorm2d(768, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_se_reduce): Conv2dStaticSamePadding( 768, 32, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_se_expand): Conv2dStaticSamePadding( 32, 768, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_project_conv): Conv2dStaticSamePadding( 768, 128, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn2): BatchNorm2d(128, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_swish): MemoryEfficientSwish() ) (15): MBConvBlock( (_expand_conv): Conv2dStaticSamePadding( 128, 768, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn0): BatchNorm2d(768, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_depthwise_conv): Conv2dStaticSamePadding( 768, 768, kernel_size=(3, 3), stride=(1, 1), groups=768, bias=False (static_padding): ZeroPad2d(padding=(1, 1, 1, 1), value=0.0) ) (_bn1): BatchNorm2d(768, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_se_reduce): Conv2dStaticSamePadding( 768, 32, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_se_expand): Conv2dStaticSamePadding( 32, 768, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_project_conv): Conv2dStaticSamePadding( 768, 128, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn2): BatchNorm2d(128, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_swish): MemoryEfficientSwish() ) (16): MBConvBlock( (_expand_conv): Conv2dStaticSamePadding( 128, 768, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn0): BatchNorm2d(768, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_depthwise_conv): Conv2dStaticSamePadding( 768, 768, kernel_size=(3, 3), stride=(1, 1), groups=768, bias=False (static_padding): ZeroPad2d(padding=(1, 1, 1, 1), value=0.0) ) (_bn1): BatchNorm2d(768, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_se_reduce): Conv2dStaticSamePadding( 768, 32, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_se_expand): Conv2dStaticSamePadding( 32, 768, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_project_conv): Conv2dStaticSamePadding( 768, 128, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn2): BatchNorm2d(128, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_swish): MemoryEfficientSwish() ) (17): MBConvBlock( (_expand_conv): Conv2dStaticSamePadding( 128, 768, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn0): BatchNorm2d(768, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_depthwise_conv): Conv2dStaticSamePadding( 768, 768, kernel_size=(3, 3), stride=(1, 1), groups=768, bias=False (static_padding): ZeroPad2d(padding=(1, 1, 1, 1), value=0.0) ) (_bn1): BatchNorm2d(768, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_se_reduce): Conv2dStaticSamePadding( 768, 32, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_se_expand): Conv2dStaticSamePadding( 32, 768, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_project_conv): Conv2dStaticSamePadding( 768, 128, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn2): BatchNorm2d(128, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_swish): MemoryEfficientSwish() ) (18): MBConvBlock( (_expand_conv): Conv2dStaticSamePadding( 128, 768, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn0): BatchNorm2d(768, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_depthwise_conv): Conv2dStaticSamePadding( 768, 768, kernel_size=(3, 3), stride=(1, 1), groups=768, bias=False (static_padding): ZeroPad2d(padding=(1, 1, 1, 1), value=0.0) ) (_bn1): BatchNorm2d(768, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_se_reduce): Conv2dStaticSamePadding( 768, 32, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_se_expand): Conv2dStaticSamePadding( 32, 768, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_project_conv): Conv2dStaticSamePadding( 768, 128, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn2): BatchNorm2d(128, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_swish): MemoryEfficientSwish() ) (19): MBConvBlock( (_expand_conv): Conv2dStaticSamePadding( 128, 768, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn0): BatchNorm2d(768, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_depthwise_conv): Conv2dStaticSamePadding( 768, 768, kernel_size=(3, 3), stride=(1, 1), groups=768, bias=False (static_padding): ZeroPad2d(padding=(1, 1, 1, 1), value=0.0) ) (_bn1): BatchNorm2d(768, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_se_reduce): Conv2dStaticSamePadding( 768, 32, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_se_expand): Conv2dStaticSamePadding( 32, 768, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_project_conv): Conv2dStaticSamePadding( 768, 128, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn2): BatchNorm2d(128, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_swish): MemoryEfficientSwish() ) (20): MBConvBlock( (_expand_conv): Conv2dStaticSamePadding( 128, 768, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn0): BatchNorm2d(768, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_depthwise_conv): Conv2dStaticSamePadding( 768, 768, kernel_size=(5, 5), stride=[1, 1], groups=768, bias=False (static_padding): ZeroPad2d(padding=(2, 2, 2, 2), value=0.0) ) (_bn1): BatchNorm2d(768, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_se_reduce): Conv2dStaticSamePadding( 768, 32, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_se_expand): Conv2dStaticSamePadding( 32, 768, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_project_conv): Conv2dStaticSamePadding( 768, 176, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn2): BatchNorm2d(176, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_swish): MemoryEfficientSwish() ) (21): MBConvBlock( (_expand_conv): Conv2dStaticSamePadding( 176, 1056, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn0): BatchNorm2d(1056, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_depthwise_conv): Conv2dStaticSamePadding( 1056, 1056, kernel_size=(5, 5), stride=(1, 1), groups=1056, bias=False (static_padding): ZeroPad2d(padding=(2, 2, 2, 2), value=0.0) ) (_bn1): BatchNorm2d(1056, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_se_reduce): Conv2dStaticSamePadding( 1056, 44, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_se_expand): Conv2dStaticSamePadding( 44, 1056, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_project_conv): Conv2dStaticSamePadding( 1056, 176, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn2): BatchNorm2d(176, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_swish): MemoryEfficientSwish() ) (22): MBConvBlock( (_expand_conv): Conv2dStaticSamePadding( 176, 1056, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn0): BatchNorm2d(1056, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_depthwise_conv): Conv2dStaticSamePadding( 1056, 1056, kernel_size=(5, 5), stride=(1, 1), groups=1056, bias=False (static_padding): ZeroPad2d(padding=(2, 2, 2, 2), value=0.0) ) (_bn1): BatchNorm2d(1056, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_se_reduce): Conv2dStaticSamePadding( 1056, 44, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_se_expand): Conv2dStaticSamePadding( 44, 1056, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_project_conv): Conv2dStaticSamePadding( 1056, 176, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn2): BatchNorm2d(176, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_swish): MemoryEfficientSwish() ) (23): MBConvBlock( (_expand_conv): Conv2dStaticSamePadding( 176, 1056, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn0): BatchNorm2d(1056, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_depthwise_conv): Conv2dStaticSamePadding( 1056, 1056, kernel_size=(5, 5), stride=(1, 1), groups=1056, bias=False (static_padding): ZeroPad2d(padding=(2, 2, 2, 2), value=0.0) ) (_bn1): BatchNorm2d(1056, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_se_reduce): Conv2dStaticSamePadding( 1056, 44, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_se_expand): Conv2dStaticSamePadding( 44, 1056, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_project_conv): Conv2dStaticSamePadding( 1056, 176, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn2): BatchNorm2d(176, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_swish): MemoryEfficientSwish() ) (24): MBConvBlock( (_expand_conv): Conv2dStaticSamePadding( 176, 1056, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn0): BatchNorm2d(1056, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_depthwise_conv): Conv2dStaticSamePadding( 1056, 1056, kernel_size=(5, 5), stride=(1, 1), groups=1056, bias=False (static_padding): ZeroPad2d(padding=(2, 2, 2, 2), value=0.0) ) (_bn1): BatchNorm2d(1056, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_se_reduce): Conv2dStaticSamePadding( 1056, 44, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_se_expand): Conv2dStaticSamePadding( 44, 1056, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_project_conv): Conv2dStaticSamePadding( 1056, 176, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn2): BatchNorm2d(176, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_swish): MemoryEfficientSwish() ) (25): MBConvBlock( (_expand_conv): Conv2dStaticSamePadding( 176, 1056, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn0): BatchNorm2d(1056, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_depthwise_conv): Conv2dStaticSamePadding( 1056, 1056, kernel_size=(5, 5), stride=(1, 1), groups=1056, bias=False (static_padding): ZeroPad2d(padding=(2, 2, 2, 2), value=0.0) ) (_bn1): BatchNorm2d(1056, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_se_reduce): Conv2dStaticSamePadding( 1056, 44, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_se_expand): Conv2dStaticSamePadding( 44, 1056, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_project_conv): Conv2dStaticSamePadding( 1056, 176, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn2): BatchNorm2d(176, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_swish): MemoryEfficientSwish() ) (26): MBConvBlock( (_expand_conv): Conv2dStaticSamePadding( 176, 1056, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn0): BatchNorm2d(1056, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_depthwise_conv): Conv2dStaticSamePadding( 1056, 1056, kernel_size=(5, 5), stride=(1, 1), groups=1056, bias=False (static_padding): ZeroPad2d(padding=(2, 2, 2, 2), value=0.0) ) (_bn1): BatchNorm2d(1056, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_se_reduce): Conv2dStaticSamePadding( 1056, 44, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_se_expand): Conv2dStaticSamePadding( 44, 1056, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_project_conv): Conv2dStaticSamePadding( 1056, 176, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn2): BatchNorm2d(176, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_swish): MemoryEfficientSwish() ) (27): MBConvBlock( (_expand_conv): Conv2dStaticSamePadding( 176, 1056, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn0): BatchNorm2d(1056, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_depthwise_conv): Conv2dStaticSamePadding( 1056, 1056, kernel_size=(5, 5), stride=[2, 2], groups=1056, bias=False (static_padding): ZeroPad2d(padding=(1, 2, 1, 2), value=0.0) ) (_bn1): BatchNorm2d(1056, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_se_reduce): Conv2dStaticSamePadding( 1056, 44, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_se_expand): Conv2dStaticSamePadding( 44, 1056, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_project_conv): Conv2dStaticSamePadding( 1056, 304, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn2): BatchNorm2d(304, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_swish): MemoryEfficientSwish() ) (28): MBConvBlock( (_expand_conv): Conv2dStaticSamePadding( 304, 1824, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn0): BatchNorm2d(1824, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_depthwise_conv): Conv2dStaticSamePadding( 1824, 1824, kernel_size=(5, 5), stride=(1, 1), groups=1824, bias=False (static_padding): ZeroPad2d(padding=(2, 2, 2, 2), value=0.0) ) (_bn1): BatchNorm2d(1824, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_se_reduce): Conv2dStaticSamePadding( 1824, 76, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_se_expand): Conv2dStaticSamePadding( 76, 1824, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_project_conv): Conv2dStaticSamePadding( 1824, 304, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn2): BatchNorm2d(304, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_swish): MemoryEfficientSwish() ) (29): MBConvBlock( (_expand_conv): Conv2dStaticSamePadding( 304, 1824, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn0): BatchNorm2d(1824, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_depthwise_conv): Conv2dStaticSamePadding( 1824, 1824, kernel_size=(5, 5), stride=(1, 1), groups=1824, bias=False (static_padding): ZeroPad2d(padding=(2, 2, 2, 2), value=0.0) ) (_bn1): BatchNorm2d(1824, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_se_reduce): Conv2dStaticSamePadding( 1824, 76, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_se_expand): Conv2dStaticSamePadding( 76, 1824, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_project_conv): Conv2dStaticSamePadding( 1824, 304, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn2): BatchNorm2d(304, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_swish): MemoryEfficientSwish() ) (30): MBConvBlock( (_expand_conv): Conv2dStaticSamePadding( 304, 1824, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn0): BatchNorm2d(1824, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_depthwise_conv): Conv2dStaticSamePadding( 1824, 1824, kernel_size=(5, 5), stride=(1, 1), groups=1824, bias=False (static_padding): ZeroPad2d(padding=(2, 2, 2, 2), value=0.0) ) (_bn1): BatchNorm2d(1824, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_se_reduce): Conv2dStaticSamePadding( 1824, 76, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_se_expand): Conv2dStaticSamePadding( 76, 1824, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_project_conv): Conv2dStaticSamePadding( 1824, 304, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn2): BatchNorm2d(304, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_swish): MemoryEfficientSwish() ) (31): MBConvBlock( (_expand_conv): Conv2dStaticSamePadding( 304, 1824, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn0): BatchNorm2d(1824, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_depthwise_conv): Conv2dStaticSamePadding( 1824, 1824, kernel_size=(5, 5), stride=(1, 1), groups=1824, bias=False (static_padding): ZeroPad2d(padding=(2, 2, 2, 2), value=0.0) ) (_bn1): BatchNorm2d(1824, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_se_reduce): Conv2dStaticSamePadding( 1824, 76, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_se_expand): Conv2dStaticSamePadding( 76, 1824, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_project_conv): Conv2dStaticSamePadding( 1824, 304, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn2): BatchNorm2d(304, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_swish): MemoryEfficientSwish() ) (32): MBConvBlock( (_expand_conv): Conv2dStaticSamePadding( 304, 1824, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn0): BatchNorm2d(1824, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_depthwise_conv): Conv2dStaticSamePadding( 1824, 1824, kernel_size=(5, 5), stride=(1, 1), groups=1824, bias=False (static_padding): ZeroPad2d(padding=(2, 2, 2, 2), value=0.0) ) (_bn1): BatchNorm2d(1824, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_se_reduce): Conv2dStaticSamePadding( 1824, 76, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_se_expand): Conv2dStaticSamePadding( 76, 1824, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_project_conv): Conv2dStaticSamePadding( 1824, 304, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn2): BatchNorm2d(304, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_swish): MemoryEfficientSwish() ) (33): MBConvBlock( (_expand_conv): Conv2dStaticSamePadding( 304, 1824, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn0): BatchNorm2d(1824, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_depthwise_conv): Conv2dStaticSamePadding( 1824, 1824, kernel_size=(5, 5), stride=(1, 1), groups=1824, bias=False (static_padding): ZeroPad2d(padding=(2, 2, 2, 2), value=0.0) ) (_bn1): BatchNorm2d(1824, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_se_reduce): Conv2dStaticSamePadding( 1824, 76, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_se_expand): Conv2dStaticSamePadding( 76, 1824, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_project_conv): Conv2dStaticSamePadding( 1824, 304, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn2): BatchNorm2d(304, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_swish): MemoryEfficientSwish() ) (34): MBConvBlock( (_expand_conv): Conv2dStaticSamePadding( 304, 1824, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn0): BatchNorm2d(1824, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_depthwise_conv): Conv2dStaticSamePadding( 1824, 1824, kernel_size=(5, 5), stride=(1, 1), groups=1824, bias=False (static_padding): ZeroPad2d(padding=(2, 2, 2, 2), value=0.0) ) (_bn1): BatchNorm2d(1824, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_se_reduce): Conv2dStaticSamePadding( 1824, 76, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_se_expand): Conv2dStaticSamePadding( 76, 1824, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_project_conv): Conv2dStaticSamePadding( 1824, 304, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn2): BatchNorm2d(304, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_swish): MemoryEfficientSwish() ) (35): MBConvBlock( (_expand_conv): Conv2dStaticSamePadding( 304, 1824, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn0): BatchNorm2d(1824, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_depthwise_conv): Conv2dStaticSamePadding( 1824, 1824, kernel_size=(5, 5), stride=(1, 1), groups=1824, bias=False (static_padding): ZeroPad2d(padding=(2, 2, 2, 2), value=0.0) ) (_bn1): BatchNorm2d(1824, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_se_reduce): Conv2dStaticSamePadding( 1824, 76, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_se_expand): Conv2dStaticSamePadding( 76, 1824, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_project_conv): Conv2dStaticSamePadding( 1824, 304, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn2): BatchNorm2d(304, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_swish): MemoryEfficientSwish() ) (36): MBConvBlock( (_expand_conv): Conv2dStaticSamePadding( 304, 1824, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn0): BatchNorm2d(1824, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_depthwise_conv): Conv2dStaticSamePadding( 1824, 1824, kernel_size=(3, 3), stride=[1, 1], groups=1824, bias=False (static_padding): ZeroPad2d(padding=(1, 1, 1, 1), value=0.0) ) (_bn1): BatchNorm2d(1824, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_se_reduce): Conv2dStaticSamePadding( 1824, 76, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_se_expand): Conv2dStaticSamePadding( 76, 1824, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_project_conv): Conv2dStaticSamePadding( 1824, 512, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn2): BatchNorm2d(512, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_swish): MemoryEfficientSwish() ) (37): MBConvBlock( (_expand_conv): Conv2dStaticSamePadding( 512, 3072, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn0): BatchNorm2d(3072, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_depthwise_conv): Conv2dStaticSamePadding( 3072, 3072, kernel_size=(3, 3), stride=(1, 1), groups=3072, bias=False (static_padding): ZeroPad2d(padding=(1, 1, 1, 1), value=0.0) ) (_bn1): BatchNorm2d(3072, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_se_reduce): Conv2dStaticSamePadding( 3072, 128, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_se_expand): Conv2dStaticSamePadding( 128, 3072, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_project_conv): Conv2dStaticSamePadding( 3072, 512, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn2): BatchNorm2d(512, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_swish): MemoryEfficientSwish() ) (38): MBConvBlock( (_expand_conv): Conv2dStaticSamePadding( 512, 3072, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn0): BatchNorm2d(3072, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_depthwise_conv): Conv2dStaticSamePadding( 3072, 3072, kernel_size=(3, 3), stride=(1, 1), groups=3072, bias=False (static_padding): ZeroPad2d(padding=(1, 1, 1, 1), value=0.0) ) (_bn1): BatchNorm2d(3072, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_se_reduce): Conv2dStaticSamePadding( 3072, 128, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_se_expand): Conv2dStaticSamePadding( 128, 3072, kernel_size=(1, 1), stride=(1, 1) (static_padding): Identity() ) (_project_conv): Conv2dStaticSamePadding( 3072, 512, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn2): BatchNorm2d(512, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_swish): MemoryEfficientSwish() ) ) (_conv_head): Conv2dStaticSamePadding( 512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False (static_padding): Identity() ) (_bn1): BatchNorm2d(2048, eps=0.001, momentum=0.010000000000000009, affine=True, track_running_stats=True) (_avg_pooling): AdaptiveAvgPool2d(output_size=1) (_dropout): Dropout(p=0.4, inplace=False) (_fc): Linear(in_features=2048, out_features=1000, bias=True) (_swish): MemoryEfficientSwish() ) ) ) (saliency_networks): ModuleList( (0): Sequential( (layernorm0): LayerNorm(2416, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2416, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (1): Sequential( (layernorm0): LayerNorm(2416, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2416, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (2): Sequential( (layernorm0): LayerNorm(2416, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2416, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (3): Sequential( (layernorm0): LayerNorm(2416, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2416, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (4): Sequential( (layernorm0): LayerNorm(2416, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2416, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (5): Sequential( (layernorm0): LayerNorm(2416, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2416, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (6): Sequential( (layernorm0): LayerNorm(2416, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2416, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (7): Sequential( (layernorm0): LayerNorm(2416, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2416, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (8): Sequential( (layernorm0): LayerNorm(2416, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2416, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (9): Sequential( (layernorm0): LayerNorm(2416, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2416, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (10): Sequential( (layernorm0): LayerNorm(2416, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2416, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (11): Sequential( (layernorm0): LayerNorm(2416, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2416, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (12): Sequential( (layernorm0): LayerNorm(2416, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2416, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (13): Sequential( (layernorm0): LayerNorm(2416, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2416, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (14): Sequential( (layernorm0): LayerNorm(2416, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2416, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (15): Sequential( (layernorm0): LayerNorm(2416, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2416, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (16): Sequential( (layernorm0): LayerNorm(2416, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2416, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (17): Sequential( (layernorm0): LayerNorm(2416, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2416, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (18): Sequential( (layernorm0): LayerNorm(2416, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2416, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (19): Sequential( (layernorm0): LayerNorm(2416, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2416, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (20): Sequential( (layernorm0): LayerNorm(2416, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2416, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (21): Sequential( (layernorm0): LayerNorm(2416, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2416, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (22): Sequential( (layernorm0): LayerNorm(2416, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2416, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (23): Sequential( (layernorm0): LayerNorm(2416, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2416, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (24): Sequential( (layernorm0): LayerNorm(2416, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2416, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (25): Sequential( (layernorm0): LayerNorm(2416, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2416, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (26): Sequential( (layernorm0): LayerNorm(2416, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2416, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (27): Sequential( (layernorm0): LayerNorm(2416, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2416, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (28): Sequential( (layernorm0): LayerNorm(2416, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2416, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (29): Sequential( (layernorm0): LayerNorm(2416, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2416, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) ) (scanpath_networks): ModuleList( (0): None (1): None (2): None (3): None (4): None (5): None (6): None (7): None (8): None (9): None (10): None (11): None (12): None (13): None (14): None (15): None (16): None (17): None (18): None (19): None (20): None (21): None (22): None (23): None (24): None (25): None (26): None (27): None (28): None (29): None ) (fixation_selection_networks): ModuleList( (0): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (1): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (2): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (3): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (4): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (5): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (6): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (7): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (8): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (9): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (10): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (11): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (12): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (13): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (14): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (15): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (16): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (17): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (18): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (19): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (20): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (21): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (22): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (23): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (24): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (25): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (26): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (27): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (28): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (29): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) ) (finalizers): ModuleList( (0): Finalizer( (gauss): GaussianFilterNd() ) (1): Finalizer( (gauss): GaussianFilterNd() ) (2): Finalizer( (gauss): GaussianFilterNd() ) (3): Finalizer( (gauss): GaussianFilterNd() ) (4): Finalizer( (gauss): GaussianFilterNd() ) (5): Finalizer( (gauss): GaussianFilterNd() ) (6): Finalizer( (gauss): GaussianFilterNd() ) (7): Finalizer( (gauss): GaussianFilterNd() ) (8): Finalizer( (gauss): GaussianFilterNd() ) (9): Finalizer( (gauss): GaussianFilterNd() ) (10): Finalizer( (gauss): GaussianFilterNd() ) (11): Finalizer( (gauss): GaussianFilterNd() ) (12): Finalizer( (gauss): GaussianFilterNd() ) (13): Finalizer( (gauss): GaussianFilterNd() ) (14): Finalizer( (gauss): GaussianFilterNd() ) (15): Finalizer( (gauss): GaussianFilterNd() ) (16): Finalizer( (gauss): GaussianFilterNd() ) (17): Finalizer( (gauss): GaussianFilterNd() ) (18): Finalizer( (gauss): GaussianFilterNd() ) (19): Finalizer( (gauss): GaussianFilterNd() ) (20): Finalizer( (gauss): GaussianFilterNd() ) (21): Finalizer( (gauss): GaussianFilterNd() ) (22): Finalizer( (gauss): GaussianFilterNd() ) (23): Finalizer( (gauss): GaussianFilterNd() ) (24): Finalizer( (gauss): GaussianFilterNd() ) (25): Finalizer( (gauss): GaussianFilterNd() ) (26): Finalizer( (gauss): GaussianFilterNd() ) (27): Finalizer( (gauss): GaussianFilterNd() ) (28): Finalizer( (gauss): GaussianFilterNd() ) (29): Finalizer( (gauss): GaussianFilterNd() ) ) ) (2): DeepGazeIIIMixture( (features): FeatureExtractor( (features): RGBDenseNet201( (0): Normalizer() (1): DenseNet( (features): Sequential( (conv0): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False) (norm0): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu0): ReLU(inplace=True) (pool0): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False) (denseblock1): _DenseBlock( (denselayer1): _DenseLayer( (norm1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer2): _DenseLayer( (norm1): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(96, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer3): _DenseLayer( (norm1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer4): _DenseLayer( (norm1): BatchNorm2d(160, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(160, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer5): _DenseLayer( (norm1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(192, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer6): _DenseLayer( (norm1): BatchNorm2d(224, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(224, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) ) (transition1): _Transition( (norm): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (pool): AvgPool2d(kernel_size=2, stride=2, padding=0) ) (denseblock2): _DenseBlock( (denselayer1): _DenseLayer( (norm1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer2): _DenseLayer( (norm1): BatchNorm2d(160, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(160, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer3): _DenseLayer( (norm1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(192, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer4): _DenseLayer( (norm1): BatchNorm2d(224, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(224, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer5): _DenseLayer( (norm1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer6): _DenseLayer( (norm1): BatchNorm2d(288, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(288, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer7): _DenseLayer( (norm1): BatchNorm2d(320, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(320, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer8): _DenseLayer( (norm1): BatchNorm2d(352, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(352, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer9): _DenseLayer( (norm1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(384, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer10): _DenseLayer( (norm1): BatchNorm2d(416, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(416, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer11): _DenseLayer( (norm1): BatchNorm2d(448, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(448, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer12): _DenseLayer( (norm1): BatchNorm2d(480, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(480, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) ) (transition2): _Transition( (norm): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (pool): AvgPool2d(kernel_size=2, stride=2, padding=0) ) (denseblock3): _DenseBlock( (denselayer1): _DenseLayer( (norm1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer2): _DenseLayer( (norm1): BatchNorm2d(288, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(288, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer3): _DenseLayer( (norm1): BatchNorm2d(320, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(320, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer4): _DenseLayer( (norm1): BatchNorm2d(352, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(352, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer5): _DenseLayer( (norm1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(384, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer6): _DenseLayer( (norm1): BatchNorm2d(416, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(416, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer7): _DenseLayer( (norm1): BatchNorm2d(448, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(448, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer8): _DenseLayer( (norm1): BatchNorm2d(480, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(480, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer9): _DenseLayer( (norm1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer10): _DenseLayer( (norm1): BatchNorm2d(544, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(544, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer11): _DenseLayer( (norm1): BatchNorm2d(576, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(576, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer12): _DenseLayer( (norm1): BatchNorm2d(608, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(608, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer13): _DenseLayer( (norm1): BatchNorm2d(640, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(640, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer14): _DenseLayer( (norm1): BatchNorm2d(672, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(672, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer15): _DenseLayer( (norm1): BatchNorm2d(704, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(704, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer16): _DenseLayer( (norm1): BatchNorm2d(736, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(736, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer17): _DenseLayer( (norm1): BatchNorm2d(768, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(768, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer18): _DenseLayer( (norm1): BatchNorm2d(800, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(800, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer19): _DenseLayer( (norm1): BatchNorm2d(832, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(832, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer20): _DenseLayer( (norm1): BatchNorm2d(864, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(864, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer21): _DenseLayer( (norm1): BatchNorm2d(896, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(896, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer22): _DenseLayer( (norm1): BatchNorm2d(928, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(928, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer23): _DenseLayer( (norm1): BatchNorm2d(960, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(960, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer24): _DenseLayer( (norm1): BatchNorm2d(992, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(992, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer25): _DenseLayer( (norm1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(1024, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer26): _DenseLayer( (norm1): BatchNorm2d(1056, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(1056, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer27): _DenseLayer( (norm1): BatchNorm2d(1088, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(1088, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer28): _DenseLayer( (norm1): BatchNorm2d(1120, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(1120, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer29): _DenseLayer( (norm1): BatchNorm2d(1152, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(1152, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer30): _DenseLayer( (norm1): BatchNorm2d(1184, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(1184, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer31): _DenseLayer( (norm1): BatchNorm2d(1216, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(1216, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer32): _DenseLayer( (norm1): BatchNorm2d(1248, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(1248, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer33): _DenseLayer( (norm1): BatchNorm2d(1280, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(1280, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer34): _DenseLayer( (norm1): BatchNorm2d(1312, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(1312, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer35): _DenseLayer( (norm1): BatchNorm2d(1344, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(1344, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer36): _DenseLayer( (norm1): BatchNorm2d(1376, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(1376, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer37): _DenseLayer( (norm1): BatchNorm2d(1408, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(1408, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer38): _DenseLayer( (norm1): BatchNorm2d(1440, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(1440, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer39): _DenseLayer( (norm1): BatchNorm2d(1472, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(1472, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer40): _DenseLayer( (norm1): BatchNorm2d(1504, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(1504, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer41): _DenseLayer( (norm1): BatchNorm2d(1536, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(1536, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer42): _DenseLayer( (norm1): BatchNorm2d(1568, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(1568, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer43): _DenseLayer( (norm1): BatchNorm2d(1600, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(1600, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer44): _DenseLayer( (norm1): BatchNorm2d(1632, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(1632, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer45): _DenseLayer( (norm1): BatchNorm2d(1664, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(1664, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer46): _DenseLayer( (norm1): BatchNorm2d(1696, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(1696, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer47): _DenseLayer( (norm1): BatchNorm2d(1728, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(1728, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer48): _DenseLayer( (norm1): BatchNorm2d(1760, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(1760, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) ) (transition3): _Transition( (norm): BatchNorm2d(1792, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (conv): Conv2d(1792, 896, kernel_size=(1, 1), stride=(1, 1), bias=False) (pool): AvgPool2d(kernel_size=2, stride=2, padding=0) ) (denseblock4): _DenseBlock( (denselayer1): _DenseLayer( (norm1): BatchNorm2d(896, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(896, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer2): _DenseLayer( (norm1): BatchNorm2d(928, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(928, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer3): _DenseLayer( (norm1): BatchNorm2d(960, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(960, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer4): _DenseLayer( (norm1): BatchNorm2d(992, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(992, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer5): _DenseLayer( (norm1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(1024, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer6): _DenseLayer( (norm1): BatchNorm2d(1056, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(1056, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer7): _DenseLayer( (norm1): BatchNorm2d(1088, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(1088, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer8): _DenseLayer( (norm1): BatchNorm2d(1120, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(1120, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer9): _DenseLayer( (norm1): BatchNorm2d(1152, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(1152, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer10): _DenseLayer( (norm1): BatchNorm2d(1184, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(1184, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer11): _DenseLayer( (norm1): BatchNorm2d(1216, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(1216, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer12): _DenseLayer( (norm1): BatchNorm2d(1248, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(1248, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer13): _DenseLayer( (norm1): BatchNorm2d(1280, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(1280, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer14): _DenseLayer( (norm1): BatchNorm2d(1312, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(1312, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer15): _DenseLayer( (norm1): BatchNorm2d(1344, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(1344, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer16): _DenseLayer( (norm1): BatchNorm2d(1376, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(1376, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer17): _DenseLayer( (norm1): BatchNorm2d(1408, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(1408, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer18): _DenseLayer( (norm1): BatchNorm2d(1440, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(1440, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer19): _DenseLayer( (norm1): BatchNorm2d(1472, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(1472, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer20): _DenseLayer( (norm1): BatchNorm2d(1504, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(1504, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer21): _DenseLayer( (norm1): BatchNorm2d(1536, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(1536, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer22): _DenseLayer( (norm1): BatchNorm2d(1568, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(1568, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer23): _DenseLayer( (norm1): BatchNorm2d(1600, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(1600, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer24): _DenseLayer( (norm1): BatchNorm2d(1632, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(1632, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer25): _DenseLayer( (norm1): BatchNorm2d(1664, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(1664, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer26): _DenseLayer( (norm1): BatchNorm2d(1696, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(1696, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer27): _DenseLayer( (norm1): BatchNorm2d(1728, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(1728, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer28): _DenseLayer( (norm1): BatchNorm2d(1760, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(1760, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer29): _DenseLayer( (norm1): BatchNorm2d(1792, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(1792, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer30): _DenseLayer( (norm1): BatchNorm2d(1824, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(1824, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer31): _DenseLayer( (norm1): BatchNorm2d(1856, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(1856, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer32): _DenseLayer( (norm1): BatchNorm2d(1888, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(1888, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) ) (norm5): BatchNorm2d(1920, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) (classifier): Linear(in_features=1920, out_features=1000, bias=True) ) ) ) (saliency_networks): ModuleList( (0): Sequential( (layernorm0): LayerNorm(2048, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2048, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (1): Sequential( (layernorm0): LayerNorm(2048, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2048, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (2): Sequential( (layernorm0): LayerNorm(2048, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2048, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (3): Sequential( (layernorm0): LayerNorm(2048, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2048, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (4): Sequential( (layernorm0): LayerNorm(2048, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2048, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (5): Sequential( (layernorm0): LayerNorm(2048, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2048, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (6): Sequential( (layernorm0): LayerNorm(2048, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2048, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (7): Sequential( (layernorm0): LayerNorm(2048, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2048, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (8): Sequential( (layernorm0): LayerNorm(2048, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2048, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (9): Sequential( (layernorm0): LayerNorm(2048, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2048, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (10): Sequential( (layernorm0): LayerNorm(2048, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2048, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (11): Sequential( (layernorm0): LayerNorm(2048, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2048, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (12): Sequential( (layernorm0): LayerNorm(2048, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2048, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (13): Sequential( (layernorm0): LayerNorm(2048, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2048, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (14): Sequential( (layernorm0): LayerNorm(2048, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2048, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (15): Sequential( (layernorm0): LayerNorm(2048, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2048, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (16): Sequential( (layernorm0): LayerNorm(2048, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2048, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (17): Sequential( (layernorm0): LayerNorm(2048, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2048, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (18): Sequential( (layernorm0): LayerNorm(2048, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2048, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (19): Sequential( (layernorm0): LayerNorm(2048, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2048, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (20): Sequential( (layernorm0): LayerNorm(2048, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2048, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (21): Sequential( (layernorm0): LayerNorm(2048, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2048, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (22): Sequential( (layernorm0): LayerNorm(2048, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2048, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (23): Sequential( (layernorm0): LayerNorm(2048, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2048, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (24): Sequential( (layernorm0): LayerNorm(2048, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2048, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (25): Sequential( (layernorm0): LayerNorm(2048, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2048, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (26): Sequential( (layernorm0): LayerNorm(2048, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2048, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (27): Sequential( (layernorm0): LayerNorm(2048, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2048, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (28): Sequential( (layernorm0): LayerNorm(2048, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2048, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (29): Sequential( (layernorm0): LayerNorm(2048, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2048, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) ) (scanpath_networks): ModuleList( (0): None (1): None (2): None (3): None (4): None (5): None (6): None (7): None (8): None (9): None (10): None (11): None (12): None (13): None (14): None (15): None (16): None (17): None (18): None (19): None (20): None (21): None (22): None (23): None (24): None (25): None (26): None (27): None (28): None (29): None ) (fixation_selection_networks): ModuleList( (0): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (1): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (2): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (3): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (4): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (5): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (6): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (7): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (8): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (9): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (10): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (11): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (12): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (13): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (14): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (15): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (16): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (17): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (18): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (19): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (20): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (21): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (22): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (23): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (24): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (25): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (26): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (27): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (28): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (29): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) ) (finalizers): ModuleList( (0): Finalizer( (gauss): GaussianFilterNd() ) (1): Finalizer( (gauss): GaussianFilterNd() ) (2): Finalizer( (gauss): GaussianFilterNd() ) (3): Finalizer( (gauss): GaussianFilterNd() ) (4): Finalizer( (gauss): GaussianFilterNd() ) (5): Finalizer( (gauss): GaussianFilterNd() ) (6): Finalizer( (gauss): GaussianFilterNd() ) (7): Finalizer( (gauss): GaussianFilterNd() ) (8): Finalizer( (gauss): GaussianFilterNd() ) (9): Finalizer( (gauss): GaussianFilterNd() ) (10): Finalizer( (gauss): GaussianFilterNd() ) (11): Finalizer( (gauss): GaussianFilterNd() ) (12): Finalizer( (gauss): GaussianFilterNd() ) (13): Finalizer( (gauss): GaussianFilterNd() ) (14): Finalizer( (gauss): GaussianFilterNd() ) (15): Finalizer( (gauss): GaussianFilterNd() ) (16): Finalizer( (gauss): GaussianFilterNd() ) (17): Finalizer( (gauss): GaussianFilterNd() ) (18): Finalizer( (gauss): GaussianFilterNd() ) (19): Finalizer( (gauss): GaussianFilterNd() ) (20): Finalizer( (gauss): GaussianFilterNd() ) (21): Finalizer( (gauss): GaussianFilterNd() ) (22): Finalizer( (gauss): GaussianFilterNd() ) (23): Finalizer( (gauss): GaussianFilterNd() ) (24): Finalizer( (gauss): GaussianFilterNd() ) (25): Finalizer( (gauss): GaussianFilterNd() ) (26): Finalizer( (gauss): GaussianFilterNd() ) (27): Finalizer( (gauss): GaussianFilterNd() ) (28): Finalizer( (gauss): GaussianFilterNd() ) (29): Finalizer( (gauss): GaussianFilterNd() ) ) ) (3): DeepGazeIIIMixture( (features): FeatureExtractor( (features): RGBResNext50( (0): Normalizer() (1): ResNet( (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False) (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False) (layer1): Sequential( (0): Bottleneck( (conv1): Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False) (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv3): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (downsample): Sequential( (0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (1): Bottleneck( (conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False) (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv3): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) ) (2): Bottleneck( (conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False) (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv3): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) ) ) (layer2): Sequential( (0): Bottleneck( (conv1): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=32, bias=False) (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv3): Conv2d(256, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (downsample): Sequential( (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False) (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (1): Bottleneck( (conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False) (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv3): Conv2d(256, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) ) (2): Bottleneck( (conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False) (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv3): Conv2d(256, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) ) (3): Bottleneck( (conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False) (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv3): Conv2d(256, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) ) ) (layer3): Sequential( (0): Bottleneck( (conv1): Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=32, bias=False) (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv3): Conv2d(512, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (downsample): Sequential( (0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False) (1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (1): Bottleneck( (conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False) (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv3): Conv2d(512, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) ) (2): Bottleneck( (conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False) (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv3): Conv2d(512, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) ) (3): Bottleneck( (conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False) (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv3): Conv2d(512, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) ) (4): Bottleneck( (conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False) (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv3): Conv2d(512, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) ) (5): Bottleneck( (conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False) (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv3): Conv2d(512, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) ) ) (layer4): Sequential( (0): Bottleneck( (conv1): Conv2d(1024, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): Conv2d(1024, 1024, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=32, bias=False) (bn2): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv3): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (downsample): Sequential( (0): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False) (1): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (1): Bottleneck( (conv1): Conv2d(2048, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): Conv2d(1024, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False) (bn2): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv3): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) ) (2): Bottleneck( (conv1): Conv2d(2048, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): Conv2d(1024, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False) (bn2): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv3): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) ) ) (avgpool): AdaptiveAvgPool2d(output_size=(1, 1)) (fc): Linear(in_features=2048, out_features=1000, bias=True) ) ) ) (saliency_networks): ModuleList( (0): Sequential( (layernorm0): LayerNorm(2560, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2560, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (1): Sequential( (layernorm0): LayerNorm(2560, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2560, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (2): Sequential( (layernorm0): LayerNorm(2560, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2560, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (3): Sequential( (layernorm0): LayerNorm(2560, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2560, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (4): Sequential( (layernorm0): LayerNorm(2560, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2560, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (5): Sequential( (layernorm0): LayerNorm(2560, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2560, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (6): Sequential( (layernorm0): LayerNorm(2560, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2560, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (7): Sequential( (layernorm0): LayerNorm(2560, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2560, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (8): Sequential( (layernorm0): LayerNorm(2560, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2560, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (9): Sequential( (layernorm0): LayerNorm(2560, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2560, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (10): Sequential( (layernorm0): LayerNorm(2560, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2560, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (11): Sequential( (layernorm0): LayerNorm(2560, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2560, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (12): Sequential( (layernorm0): LayerNorm(2560, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2560, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (13): Sequential( (layernorm0): LayerNorm(2560, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2560, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (14): Sequential( (layernorm0): LayerNorm(2560, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2560, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (15): Sequential( (layernorm0): LayerNorm(2560, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2560, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (16): Sequential( (layernorm0): LayerNorm(2560, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2560, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (17): Sequential( (layernorm0): LayerNorm(2560, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2560, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (18): Sequential( (layernorm0): LayerNorm(2560, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2560, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (19): Sequential( (layernorm0): LayerNorm(2560, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2560, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (20): Sequential( (layernorm0): LayerNorm(2560, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2560, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (21): Sequential( (layernorm0): LayerNorm(2560, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2560, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (22): Sequential( (layernorm0): LayerNorm(2560, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2560, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (23): Sequential( (layernorm0): LayerNorm(2560, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2560, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (24): Sequential( (layernorm0): LayerNorm(2560, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2560, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (25): Sequential( (layernorm0): LayerNorm(2560, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2560, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (26): Sequential( (layernorm0): LayerNorm(2560, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2560, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (27): Sequential( (layernorm0): LayerNorm(2560, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2560, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (28): Sequential( (layernorm0): LayerNorm(2560, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2560, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) (29): Sequential( (layernorm0): LayerNorm(2560, eps=1e-12, center=True, scale=True) (conv0): Conv2d(2560, 8, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias0): Bias(channels=8) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(8, eps=1e-12, center=True, scale=True) (conv1): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (layernorm2): LayerNorm(16, eps=1e-12, center=True, scale=True) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias2): Bias(channels=1) (softplus3): Softplus(beta=1, threshold=20) ) ) (scanpath_networks): ModuleList( (0): None (1): None (2): None (3): None (4): None (5): None (6): None (7): None (8): None (9): None (10): None (11): None (12): None (13): None (14): None (15): None (16): None (17): None (18): None (19): None (20): None (21): None (22): None (23): None (24): None (25): None (26): None (27): None (28): None (29): None ) (fixation_selection_networks): ModuleList( (0): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (1): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (2): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (3): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (4): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (5): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (6): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (7): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (8): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (9): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (10): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (11): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (12): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (13): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (14): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (15): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (16): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (17): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (18): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (19): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (20): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (21): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (22): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (23): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (24): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (25): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (26): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (27): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (28): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (29): Sequential( (layernorm0): LayerNormMultiInput( (layernorm_part0): LayerNorm(1, eps=1e-12, center=True, scale=True) ) (conv0): Conv2dMultiInput( (conv_part0): Conv2d(1, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bias0): Bias(channels=128) (softplus0): Softplus(beta=1, threshold=20) (layernorm1): LayerNorm(128, eps=1e-12, center=True, scale=True) (conv1): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (bias1): Bias(channels=16) (softplus1): Softplus(beta=1, threshold=20) (conv2): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) ) ) (finalizers): ModuleList( (0): Finalizer( (gauss): GaussianFilterNd() ) (1): Finalizer( (gauss): GaussianFilterNd() ) (2): Finalizer( (gauss): GaussianFilterNd() ) (3): Finalizer( (gauss): GaussianFilterNd() ) (4): Finalizer( (gauss): GaussianFilterNd() ) (5): Finalizer( (gauss): GaussianFilterNd() ) (6): Finalizer( (gauss): GaussianFilterNd() ) (7): Finalizer( (gauss): GaussianFilterNd() ) (8): Finalizer( (gauss): GaussianFilterNd() ) (9): Finalizer( (gauss): GaussianFilterNd() ) (10): Finalizer( (gauss): GaussianFilterNd() ) (11): Finalizer( (gauss): GaussianFilterNd() ) (12): Finalizer( (gauss): GaussianFilterNd() ) (13): Finalizer( (gauss): GaussianFilterNd() ) (14): Finalizer( (gauss): GaussianFilterNd() ) (15): Finalizer( (gauss): GaussianFilterNd() ) (16): Finalizer( (gauss): GaussianFilterNd() ) (17): Finalizer( (gauss): GaussianFilterNd() ) (18): Finalizer( (gauss): GaussianFilterNd() ) (19): Finalizer( (gauss): GaussianFilterNd() ) (20): Finalizer( (gauss): GaussianFilterNd() ) (21): Finalizer( (gauss): GaussianFilterNd() ) (22): Finalizer( (gauss): GaussianFilterNd() ) (23): Finalizer( (gauss): GaussianFilterNd() ) (24): Finalizer( (gauss): GaussianFilterNd() ) (25): Finalizer( (gauss): GaussianFilterNd() ) (26): Finalizer( (gauss): GaussianFilterNd() ) (27): Finalizer( (gauss): GaussianFilterNd() ) (28): Finalizer( (gauss): GaussianFilterNd() ) (29): Finalizer( (gauss): GaussianFilterNd() ) ) ) ) )