|
DeepGazeI( |
|
(features): FeatureExtractor( |
|
(features): RGBalexnet( |
|
(0): Normalizer() |
|
(1): AlexNet( |
|
(features): Sequential( |
|
(0): Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2)) |
|
(1): ReLU(inplace=True) |
|
(2): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False) |
|
(3): Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2)) |
|
(4): ReLU(inplace=True) |
|
(5): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False) |
|
(6): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) |
|
(7): ReLU(inplace=True) |
|
(8): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) |
|
(9): ReLU(inplace=True) |
|
(10): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) |
|
(11): ReLU(inplace=True) |
|
(12): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False) |
|
) |
|
(avgpool): AdaptiveAvgPool2d(output_size=(6, 6)) |
|
(classifier): Sequential( |
|
(0): Dropout(p=0.5, inplace=False) |
|
(1): Linear(in_features=9216, out_features=4096, bias=True) |
|
(2): ReLU(inplace=True) |
|
(3): Dropout(p=0.5, inplace=False) |
|
(4): Linear(in_features=4096, out_features=4096, bias=True) |
|
(5): ReLU(inplace=True) |
|
(6): Linear(in_features=4096, out_features=1000, bias=True) |
|
) |
|
) |
|
) |
|
) |
|
(readout_network): Sequential( |
|
(conv0): Conv2d(256, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) |
|
) |
|
(finalizer): Finalizer( |
|
(gauss): GaussianFilterNd() |
|
) |
|
) |
|
|