File size: 24,693 Bytes
817b731 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 |
{
"cells": [
{
"cell_type": "markdown",
"id": "85731c50-1a96-41d5-8b7b-2d7c09ef932a",
"metadata": {
"slideshow": {
"slide_type": ""
},
"tags": []
},
"source": [
"# 6.1. Activation Maps \n",
"\n",
"This tutorial showcases how to obtain kernels' responses (also known as activation maps) at different depths of a deep neural network. We study that in pretrained networks trained on ImageNet.\n",
"\n",
"In neuroscience, we have learnt a lot from measuring the response of a neuron when the organism is exposed to specific stimuli. The neural coding technique can reveal the relationship between the stimulus and the individual or ensemble neuronal responses. For instance, the seminal study of Hubel and Wiesel in which oriented bars were shown to cats and the response of V1 neurons was recorded using implanted electrodes.\n",
"\n",
"<img src=\"https://www.researchgate.net/publication/337360115/figure/fig4/AS:826941796012034@1574169696239/Left-Experimental-setup-from-Hubel-Wiesel-136-137-adapted-from-253-Chapter-11.ppm\" width=\"600\" height=\"200\">\n",
"\n",
"\n",
"A similar technique can be used in artificial neurons to learn more about the representation a network has learnt during its training. **Obtaining response maps is much easier in deep networks**:\n",
"* we can show them numerous stimuli,\n",
"* we have access to all units.\n",
"\n",
"Example articles that use this technique:\n",
"* [Contrast sensitivity functions in autoencoders](https://jov.arvojournals.org/article.aspx?articleid=2778843)\n",
"* [Color for object recognition: Hue and chroma sensitivity in the deep features of convolutional neural networks](https://www.sciencedirect.com/science/article/pii/S004269892100016X)"
]
},
{
"cell_type": "markdown",
"id": "e7bc678e-be89-4cb6-b6ab-9b5589e44e2a",
"metadata": {},
"source": [
"## 0. Packages\n",
"\n",
"Let's start with all the necessary packages to implement this tutorial.\n",
"\n",
" * [numpy](https://numpy.org/) is the main package for scientific computing with Python. It's often imported with the `np` shortcut.\n",
" * [matplotlib](https://matplotlib.org/) is a library to plot graphs in Python.\n",
" * [os](https://docs.python.org/3/library/os.html) provides a portable way of using operating system-dependent functionality, e.g., modifying files/folders.\n",
" * [requests](https://requests.readthedocs.io/en/latest/) is a package that collects several modules for working with URLs.\n",
" * [PIL](https://pillow.readthedocs.io/en/stable/) is a fast image processing designed for general applications.\n",
" * [torch](https://pytorch.org/docs/stable/index.html) is a deep learning framework that allows us to define networks, handle datasets, optimise a loss function, etc."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6ef2433b-f113-44cb-a064-757a6e5cd82c",
"metadata": {},
"outputs": [],
"source": [
"# importing the necessary packages/libraries\n",
"import numpy as np\n",
"from matplotlib import pyplot as plt\n",
"import random\n",
"import os\n",
"import requests\n",
"\n",
"from PIL import Image as pil_image\n",
"\n",
"import torch\n",
"import torchvision\n",
"from torchvision import models\n",
"import torchvision.transforms as torch_transforms\n",
"\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"from scipy.misc import face\n",
"from scipy.ndimage import zoom\n",
"from scipy.special import logsumexp\n",
"import torch"
]
},
{
"cell_type": "markdown",
"id": "49d690a0-b4b5-4fdf-87d3-8b47e7efdf01",
"metadata": {},
"source": [
"### device\n",
"Choosing CPU or GPU based on the availability of the hardware."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "086aa636-9994-4c62-a792-907ac132a3b5",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')"
]
},
{
"cell_type": "markdown",
"id": "9ba9f7d3-f53b-4879-a751-9ae3210a7c67",
"metadata": {},
"source": [
"## 1. Stimuli\n",
"\n",
"In this tutorial, we use natural images as our stimuli, but one can show artificial networks any type of stimuli.\n",
"\n",
"We load four images from the internet and show them."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9046c5b6-9681-4bd3-9539-35d3bc68c748",
"metadata": {},
"outputs": [],
"source": [
"# list of image URLs\n",
"urls = [\n",
" 'https://github.com/pytorch/hub/raw/master/images/dog.jpg',\n",
" 'http://farm4.staticflickr.com/3418/3368475823_74f3d3e9f9_z.jpg', \n",
" 'http://farm3.staticflickr.com/2431/3908162999_5b5cd7c1b7_z.jpg',\n",
" 'http://farm8.staticflickr.com/7069/6903096875_042efb5ee7_z.jpg'\n",
"]\n",
"\n",
"# Openning the image and visualising it\n",
"input_images = [pil_image.open(requests.get(url, stream=True).raw) for url in urls]\n",
"\n",
"fig = plt.figure(figsize=(12, 3))\n",
"fig.suptitle('Original images', size=22)\n",
"for img_ind, img in enumerate(input_images):\n",
" ax = fig.add_subplot(1, 4, img_ind+1)\n",
" ax.imshow(img)\n",
" ax.axis('off')"
]
},
{
"cell_type": "markdown",
"id": "1509784a-cf03-44c3-82e8-f8489f3922fb",
"metadata": {},
"source": [
"### Torch Tensors\n",
"\n",
"Before inputting a network with our images we:\n",
"1. **resize** them to what the image size that the pretrained network was trained on,\n",
"2. **normalise** them to the range of values that the pretrained network was trained on.\n",
"\n",
"While these two steps are not strictly speaking mandatory, it's sensible to measure the response of kernels under similar conditions that the network is meant to function.\n",
"\n",
"In the end, we visualise the tensor images (after inverting the normalisation). This is often a good exercise to do to ensure what we show to networks is correct."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1d1f43eb-3833-474c-8dbe-ca4cb44f7430",
"metadata": {},
"outputs": [],
"source": [
"# the training size of ImageNet pretrained networks\n",
"target_size = 224\n",
"# mean and std values of ImageNet pretrained networks\n",
"mean = [0.485, 0.456, 0.406]\n",
"std = [0.229, 0.224, 0.225]\n",
"\n",
"# the list of transformation functions\n",
"transforsm = torch_transforms.Compose([\n",
" torch_transforms.Resize((target_size, target_size)),\n",
" torch_transforms.ToTensor(),\n",
" torch_transforms.Normalize(mean=mean, std=std)\n",
"])\n",
"\n",
"torch_imgs = torch.stack([transforsm(img) for img in input_images])\n",
"print(\"Input tensor shape:\", torch_imgs.shape)\n",
"\n",
"# visualising the torch images\n",
"fig = plt.figure(figsize=(12, 3))\n",
"fig.suptitle('Resized images', size=22)\n",
"for img_ind, img in enumerate(torch_imgs):\n",
" ax = fig.add_subplot(1, 4, img_ind+1)\n",
" # inversing the normalisation by multiplying to std and adding mean\n",
" ax.imshow(img.numpy().transpose(1, 2, 0) * std + mean)\n",
" ax.axis('off')"
]
},
{
"cell_type": "markdown",
"id": "602897ce-33c4-4f37-93a9-fffccbdf9fc8",
"metadata": {},
"source": [
"## 2. Network\n",
"\n",
"We use [torchvision.models](https://pytorch.org/vision/stable/models.html) to obtain networks pretrained on ImageNet.\n",
"\n",
"In this tutorial, we focus on the `ResNet` architectures, but the logic of computing activation maps remains the same for all other convolutional neural networks (CNN).\n",
"\n",
"Remember that you must call `network.eval()` to set dropout and batch normalisation layers to evaluation mode before recording activation maps. Failing to do this will yield inconsistent results."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f64574d4",
"metadata": {},
"outputs": [],
"source": [
"import deepgaze_pytorch\n",
"\n",
"# you can use DeepGazeI or DeepGazeIIE\n",
"network = deepgaze_pytorch.DeepGazeIIE(pretrained=True).to(device)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3e385a0d-65db-4092-82f8-96c2bb7da079",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"# network = models.resnet50(weights=models.ResNet50_Weights.IMAGENET1K_V1).to(device)\n",
"network = models.resnet50(pretrained=True).to(device)\n",
"#network = models.vgg16(pretrained=True).to(device)\n",
"network.eval()\n",
"\n",
"# getting the name of layers, which we use later to obtain their activation maps\n",
"layer_names = [key for key, _ in network.named_children()]\n",
"print(layer_names)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a91cf2a4",
"metadata": {},
"outputs": [],
"source": [
"network"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d0b53fdd",
"metadata": {},
"outputs": [],
"source": [
"for child_module in network.children():\n",
" print(child_module)"
]
},
{
"cell_type": "markdown",
"id": "3f5c5f96-8432-4582-8a24-c1e533d8cfbc",
"metadata": {},
"source": [
"## 3. Forward Hooks\n",
"\n",
"PyTorch allows inspecting/modifying the output and gradient output of a layer using **hooks**. In this tutorial, we use forward hooks to inspect the output of a layer. To do so, we call the `register_forward_hook` for every layer that we want to inspect:\n",
"* `register_forward_hook` registers a forward hook on the module.\n",
"* The hook will be called every time after `forward()` has computed an output.\n",
"* It returns a handle that can be used to remove the added hook by calling `handle.remove()`.\n",
"\n",
"The hook should have the following signature:\n",
"\n",
" hook(module, args, output) -> None or modified output\n",
"\n",
"In our example, we have implemented this in the `activation` function that stores the outputs in a `dict`.\n",
"\n",
"In our example, we only access the first tier of layers/modules that are accessible by\n",
"\n",
" layer = getattr(model, layer_name)\n",
"\n",
"Essentially, we can only access one of these ten layers:\n",
"\n",
" ['conv1', 'bn1', 'relu', 'maxpool', 'layer1', 'layer2', 'layer3', 'layer4', 'avgpool', 'fc']\n",
"\n",
"However, many times a network consists of several nested modules. Often, we also want to record the activation maps of those layer. For instance, `layer1-4` of `ResNet` contains several residual blocks. To access those nested layers:\n",
"* Access the parent module, for example, by calling the `getattr` module or simply by getting the correct index from the list of `network.children()`.\n",
"* Iterate this process until the layer is directly accessible and it's not nested within another module.\n",
"\n",
"**Excercie**: create hooks for residual blocks of ResNet or hidden layers of any other network you're interested to explore."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "98621060-9343-4a89-9888-20f9987f7cc9",
"metadata": {},
"outputs": [],
"source": [
"\n",
"def activation(name, acts_dict):\n",
" \"\"\"Storing the output of a module/layer in the dict that is passed as an argument.\"\"\"\n",
" def hook(model, input_x, output_y):\n",
" acts_dict[name] = output_y.detach()\n",
" return hook\n",
"'''\n",
"\n",
"def activation(name, acts_dict):\n",
" def hook(model, input_x, output_y):\n",
" if isinstance(output_y, list):\n",
" acts_dict[name] = [item.detach() for item in output_y]\n",
" else:\n",
" acts_dict[name] = output_y.detach()\n",
" return hook\n",
"'''\n",
"\n",
"def create_hooks(model, layers):\n",
" \"\"\"For the given model it creates a hook for all specified layers.\"\"\"\n",
" acts_dict = dict()\n",
" hooks = dict()\n",
" for layer_name in layers:\n",
" # accessing the layer/module from the network\n",
" layer = getattr(model, layer_name)\n",
" hooks[layer_name] = layer.register_forward_hook(activation(layer_name, acts_dict))\n",
" return acts_dict, hooks"
]
},
{
"cell_type": "markdown",
"id": "7e4fa386-10d0-4cbc-8cbf-2d03c1ce840d",
"metadata": {},
"source": [
"Next we create the hooks for three layers `['maxpool', 'layer2', 'fc']` of our network. The activation maps are filled in when we call the `forward` function of the networks"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a0b64d80-3535-420b-8130-dc926f8555d8",
"metadata": {},
"outputs": [],
"source": [
"#acts_dict, hooks = create_hooks(network, ['maxpool', 'layer2', 'fc'])\n",
"#acts_dict, hooks = create_hooks(network, ['features', 'saliency_networks', 'scanpath_networks', 'fixation_selection_networks', 'finalizers'])\n",
"acts_dict, hooks = create_hooks(network, ['0', '1', '2', '3'])\n"
]
},
{
"cell_type": "markdown",
"id": "03394a89-8257-4887-ae6f-ad9283ad0d55",
"metadata": {},
"source": [
"## 4. Forward call\n",
"\n",
"Next, we simply input the `network` with our input stimuli `torch_imgs`. **Note**: we're not really interested in the output of the network per see, but rather the activation maps that are filled in the `acts_dict` after the `forward` call.\n",
"\n",
"**Important** If you call the network once again with a new set of stimuli, the data in `acts_dict` gets overwritten. Therefore, if you need that information you have to make a copy of then in another variable."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a3323097",
"metadata": {},
"outputs": [],
"source": [
"acts_dict"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "95b19d91",
"metadata": {},
"outputs": [],
"source": [
"image_tensor[1:].shape"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5d241867",
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"from scipy.misc import face\n",
"from scipy.ndimage import zoom\n",
"from scipy.special import logsumexp\n",
"import torch\n",
"\n",
"import deepgaze_pytorch\n",
"\n",
"DEVICE = 'cuda'\n",
"\n",
"# you can use DeepGazeI or DeepGazeIIE\n",
"model = deepgaze_pytorch.DeepGazeIIE(pretrained=True).to(DEVICE)\n",
"\n",
"image = face()\n",
"\n",
"# load precomputed centerbias log density (from MIT1003) over a 1024x1024 image\n",
"# you can download the centerbias from https://github.com/matthias-k/DeepGaze/releases/download/v1.0.0/centerbias_mit1003.npy\n",
"# alternatively, you can use a uniform centerbias via `centerbias_template = np.zeros((1024, 1024))`.\n",
"centerbias_template = np.load('centerbias_mit1003.npy')\n",
"# rescale to match image size\n",
"centerbias = zoom(centerbias_template, (image.shape[0]/centerbias_template.shape[0], image.shape[1]/centerbias_template.shape[1]), order=0, mode='nearest')\n",
"# renormalize log density\n",
"centerbias -= logsumexp(centerbias)\n",
"\n",
"image_tensor = torch.tensor([image.transpose(2, 0, 1)]).to(DEVICE)\n",
"centerbias_tensor = torch.tensor([centerbias]).to(DEVICE)\n",
"\n",
"log_density_prediction = model(image_tensor, centerbias_tensor)\n",
"\n",
"f, axs = plt.subplots(nrows=1, ncols=2, figsize=(8, 3))\n",
"axs[0].imshow(image)\n",
"#axs[0].plot(fixation_history_x, fixation_history_y, 'o-', color='red')\n",
"#axs[0].scatter(fixation_history_x[-1], fixation_history_y[-1], 100, color='yellow', zorder=100)\n",
"axs[0].set_axis_off()\n",
"axs[1].matshow(log_density_prediction.detach().cpu().numpy()[0, 0]) # first image in batch, first (and only) channel\n",
"#axs[1].plot(fixation_history_x, fixation_history_y, 'o-', color='red')\n",
"#axs[1].scatter(fixation_history_x[-1], fixation_history_y[-1], 100, color='yellow', zorder=100)\n",
"axs[1].set_axis_off()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1a3a04dd",
"metadata": {},
"outputs": [],
"source": [
"image.shape"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9b4a43e0",
"metadata": {},
"outputs": [],
"source": [
"image_tensor.shape"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b9a5132e",
"metadata": {},
"outputs": [],
"source": [
"_ = network(image_tensor, centerbias_tensor)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0a992117-64b0-4978-bb1d-66a40ad6d512",
"metadata": {
"scrolled": false
},
"outputs": [],
"source": [
"# load precomputed centerbias log density (from MIT1003) over a 1024x1024 image\n",
"# you can download the centerbias from https://github.com/matthias-k/DeepGaze/releases/download/v1.0.0/centerbias_mit1003.npy\n",
"# alternatively, you can use a uniform centerbias via `centerbias_template = np.zeros((1024, 1024))`.\n",
"centerbias_template = np.load('centerbias_mit1003.npy')\n",
"# rescale to match image size\n",
"centerbias = zoom(centerbias_template, (torch_imgs.shape[2]/centerbias_template.shape[0], torch_imgs.shape[3]/centerbias_template.shape[1]), order=0, mode='nearest')\n",
"# renormalize log density\n",
"centerbias -= logsumexp(centerbias)\n",
"\n",
"image_tensor = torch_imgs.to(device)\n",
"centerbias_tensor = torch.tensor([centerbias]).to(device)\n",
"\n"
]
},
{
"cell_type": "markdown",
"id": "65c0e4ea-5e0f-4179-89d0-d81e22d04346",
"metadata": {},
"source": [
"## 5. Visualisation\n",
"\n",
"Let's look at the obtained activation maps. First, we just print the shape of obtained activation maps:\n",
"* The first dimension for all examined layers is 4 corresponding to the number of images.\n",
"* The second dimension corresponds to the number of kernels (e.g., `maxpool` has 64 kernels).\n",
"* The third and fourth are the spatial resolution (note that the `fc` layer doesn't have any spatial content)."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0b847609-1c36-411d-861e-f69f01c009b2",
"metadata": {},
"outputs": [],
"source": [
"for layer_name, layer_acts in acts_dict.items():\n",
" print(layer_name, layer_acts.shape)"
]
},
{
"cell_type": "markdown",
"id": "539b380e-f6b5-4c22-9a46-c0e1082e8e7b",
"metadata": {},
"source": [
"### Early layer\n",
"\n",
"Next, we visualise the activation maps of the `maxpool` layer to have some intuitions about the obtained responses. We can observe excitation by low-level features such as:\n",
"* Some of the kernels get activated by certain colours.\n",
"* Other kernels get activated by edges.\n",
"\n",
"The `maxpool` corresponds to an early layer of ResNet50, therefore the features that kernels are responsive to are also basic features."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "db94aca1-1ca9-49ad-acfd-9fe296523a37",
"metadata": {},
"outputs": [],
"source": [
"layer_act = acts_dict['maxpool']\n",
"for img_ind, layer_acts in enumerate(layer_act):\n",
" fig = plt.figure(figsize=(18, 7))\n",
" fig.suptitle('Image %d' % img_ind, size=22)\n",
" cols = 16\n",
" rows = layer_acts.shape[0] // cols\n",
" for kernel_ind, kernel_act in enumerate(layer_acts.detach().cpu()):\n",
" ax = fig.add_subplot(rows, cols, kernel_ind+1)\n",
" ax.matshow(kernel_act, cmap='gray')\n",
" ax.set_title('K=%.3d' % kernel_ind)\n",
" ax.axis('off')"
]
},
{
"cell_type": "markdown",
"id": "8bf6133a-e313-437c-8b97-f182a00a2266",
"metadata": {},
"source": [
"### Deeper layer\n",
"\n",
"Let's visualise the activation maps of a deeper layer `layer2` for one of the images. Overall, we can observe that the activation maps are not as simple as an earlier layer. Kernels in `layer2` respond to different patterns and textures. The set of features that excite a kernel becomes more complex as we go deeper into a network."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c3710d63-fbf9-4d22-af87-a0856bae5bbc",
"metadata": {
"scrolled": false
},
"outputs": [],
"source": [
"layer_act = acts_dict['layer2']\n",
"for img_ind, layer_acts in enumerate(layer_act):\n",
" fig = plt.figure(figsize=(18, 56))\n",
" cols = 16\n",
" rows = layer_acts.shape[0] // cols\n",
" for kernel_ind, kernel_act in enumerate(layer_acts.detach().cpu()):\n",
" ax = fig.add_subplot(rows, cols, kernel_ind+1)\n",
" ax.matshow(kernel_act, cmap='gray')\n",
" ax.set_title('K=%.3d' % kernel_ind)\n",
" ax.axis('off')\n",
" break"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6c05c91e",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "145cb27b",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "989e0490",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "14c4a856",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"id": "c21ab83e-7ea3-46b2-9889-fdbfeaca205a",
"metadata": {},
"source": [
"## 6. Systematic experiments\n",
"\n",
"While visualisation of activation maps for natural images is interesting and results in some intuition about the underlying representation of deep networks, it's more informative to check the activation maps with respect to a specific feature (i.e., dependent variable) and keep all other parameters fixed (i.e., independent variables).\n",
"\n",
"**Quantitative** assessment: the activation maps we visualised above contain spatial resolution. To report the degree of excitation one could use different techniques such as:\n",
"* Statistics of the entire activation map (e.g., mean or median).\n",
"* Statistics on pixels corresponding to the foreground stimuli. This is only possible if we have a segmentation map of input pixels (e.g., in the case of generated stimuli).\n",
"* Thresholding the activation maps and counting the number of pixels that meet this criterion.\n",
"\n",
"\n",
"**Questions to explore**: recording the activation map is a powerful technique and one can perform many interesting experiments with it. Below are a few example exercises:\n",
"1. **Colour**\n",
" * Plot a circle in the middle of a grey background.\n",
" * Change the colour of the circle systematically across the hue spectrum.\n",
" * Measure the activation of kernels.\n",
" * Are there kernels that get highly excited in the presence of certain colours?\n",
" * Are colour kernels more present in early or deeper layers?\n",
"2. **Size**\n",
" * Plot different geometrical shapes in the middle of a grey background.\n",
" * Change the size of those shapes systematically.\n",
" * Measure the activation of kernels.\n",
" * Plot the level of activation as a function of stimuli size.\n",
" * Do artificial kernels show a preference for a certain size?\n",
" * Does The size preference of kernels change as a function of layer?"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.5"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|