File size: 206,214 Bytes
817b731
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 44,
   "id": "2683899d",
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "from scipy.misc import face\n",
    "from scipy.ndimage import zoom\n",
    "from scipy.special import logsumexp\n",
    "import torch\n",
    "import matplotlib.pyplot as plt"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 45,
   "id": "a9c8a9e7",
   "metadata": {},
   "outputs": [],
   "source": [
    "import scipy.io"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 46,
   "id": "32bd8589",
   "metadata": {
    "scrolled": true
   },
   "outputs": [],
   "source": [
    "import cv2\n",
    "import os\n",
    "\n",
    "def load_images_from_folder(folder):\n",
    "    images = []\n",
    "    img_name = []\n",
    "    for filename in os.listdir(folder):\n",
    "        img = cv2.imread(os.path.join(folder,filename))\n",
    "        if img is not None:\n",
    "            img = cv2.resize(img, (224, 224))\n",
    "            images.append(img)\n",
    "            img_name.append(filename)\n",
    "    return images, img_name"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 118,
   "id": "c5ebf6a1",
   "metadata": {},
   "outputs": [],
   "source": [
    "imgs, img_name = load_images_from_folder('/home/pranjul/BranchingNets/all_images_net_input/2_96stimuli_matched_objects/')\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 119,
   "id": "571c8db2",
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "['04_match.png',\n",
       " '80_match.png',\n",
       " '64_match.png',\n",
       " '75_match.png',\n",
       " '48_match.png',\n",
       " '56_match.png',\n",
       " '26_match.png',\n",
       " '37_match.png',\n",
       " '42_match.png',\n",
       " '08_match.png',\n",
       " '15_match.png',\n",
       " '34_match.png',\n",
       " '17_match.png',\n",
       " '57_match.png',\n",
       " '74_match.png',\n",
       " '72_match.png',\n",
       " '78_match.png',\n",
       " '20_match.png',\n",
       " '39_match.png',\n",
       " '53_match.png',\n",
       " '10_match.png',\n",
       " '83_match.png',\n",
       " '13_match.png',\n",
       " '44_match.png',\n",
       " '59_match.png',\n",
       " '12_match.png',\n",
       " '16_match.png',\n",
       " '22_match.png',\n",
       " '81_match.png',\n",
       " '06_match.png',\n",
       " '46_match.png',\n",
       " '43_match.png']"
      ]
     },
     "execution_count": 119,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "img_name"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "cd911d2d",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e99e7121",
   "metadata": {},
   "outputs": [],
   "source": [
    "len(img_name)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "6e65c80b",
   "metadata": {
    "scrolled": false
   },
   "outputs": [],
   "source": [
    "int(img_name[0].split('.')[0])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "303e82af",
   "metadata": {
    "scrolled": false
   },
   "outputs": [],
   "source": [
    "scipy.io.loadmat('S02_fix/S02_face_1.mat')['currImData'][:,4]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f5b41345",
   "metadata": {},
   "outputs": [],
   "source": [
    "scipy.io.loadmat('S02_fix/S02_face_1.mat')['currImData'][:,5]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e60e197d",
   "metadata": {
    "scrolled": true
   },
   "outputs": [],
   "source": [
    "scipy.io.loadmat('S02_fix/S02_pareidolia_64.mat')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a071e2e4",
   "metadata": {},
   "outputs": [],
   "source": [
    "for filename in os.listdir('S02_fix'):\n",
    "    print(filename)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "0dc9ab34",
   "metadata": {},
   "outputs": [],
   "source": [
    "def load_fix_from_folder(folder):\n",
    "    fix_X = []\n",
    "    fix_Y = []\n",
    "    img_name = []\n",
    "    for filename in os.listdir(folder):\n",
    "        fix_X.append(scipy.io.loadmat(os.path.join(folder,filename))['currImData'][:,4])\n",
    "        fix_Y.append(scipy.io.loadmat(os.path.join(folder,filename))['currImData'][:,5])\n",
    "        img_name.append(str(scipy.io.loadmat(os.path.join(folder,filename))['currImName'][0][0]) + '.jpg')\n",
    "        #print(filename)\n",
    "        #print(img_name)\n",
    "    return fix_X, fix_Y, img_name"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "5ad3e153",
   "metadata": {},
   "outputs": [],
   "source": [
    "fix_X, fix_Y, img_name = load_fix_from_folder('S_fix/S13_fix')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "43fc95a0",
   "metadata": {
    "scrolled": true
   },
   "outputs": [],
   "source": [
    "import glob\n",
    "import os\n",
    "\n",
    "# Specify the directory containing the nested folder structure\n",
    "root_dir = '/home/pranjul/BranchingNets/all_images_net_input/'\n",
    "\n",
    "# Specify the image file extensions you want to load\n",
    "extensions = ['*.jpg', '*.jpeg', '*.png']\n",
    "\n",
    "# Create a list to store the image file paths\n",
    "image_paths = []\n",
    "\n",
    "# Traverse through all subdirectories and search for image files\n",
    "for extension in extensions:\n",
    "    search_pattern = os.path.join(root_dir, '**', extension)\n",
    "    image_paths.extend(glob.glob(search_pattern, recursive=True))\n",
    "\n",
    "# Print the paths of the loaded image files\n",
    "for image_path in image_paths:\n",
    "    print(image_path)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "864cb318",
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "\n",
    "def create_folder(folder_path):\n",
    "    try:\n",
    "        os.mkdir(folder_path)\n",
    "        print(f\"Folder '{folder_path}' created successfully.\")\n",
    "    except FileExistsError:\n",
    "        print(f\"Folder '{folder_path}' already exists.\")\n",
    "    except Exception as e:\n",
    "        print(f\"An error occurred: {e}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "47b06581",
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "\n",
    "def folder_exists(folder_path):\n",
    "    return os.path.exists(folder_path) and os.path.isdir(folder_path)\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "1d22fce3",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Replace 'path/to/your/folder' with the folder path you want to check\n",
    "folder_path = 'S_fix/S18_fix'\n",
    "if folder_exists(folder_path):\n",
    "    print(f\"Folder '{folder_path}' exists.\")\n",
    "else:\n",
    "    print(f\"Folder '{folder_path}' does not exist.\")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "031c09c0",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "30f2ed42",
   "metadata": {
    "scrolled": true
   },
   "outputs": [],
   "source": [
    "for f in range(13, 56):\n",
    "    print(f)\n",
    "    print('S_fix/S'+ str(f) +'_fix')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d5f1efd1",
   "metadata": {
    "scrolled": true
   },
   "outputs": [],
   "source": [
    "import matplotlib.pyplot as plt\n",
    "import numpy as np\n",
    "from scipy.misc import face\n",
    "from scipy.ndimage import zoom\n",
    "from scipy.special import logsumexp\n",
    "import torch\n",
    "\n",
    "import deepgaze_pytorch\n",
    "\n",
    "DEVICE = 'cuda'\n",
    "\n",
    "# you can use DeepGazeI or DeepGazeIIE\n",
    "model = deepgaze_pytorch.DeepGazeIII(pretrained=True).to(DEVICE)\n",
    "\n",
    "#image = face()\n",
    "\n",
    "x = {}\n",
    "for q in range(1, 10):\n",
    "    \n",
    "    # Replace 'path/to/your/folder' with the folder path you want to check\n",
    "    folder_path = 'S_fix/S0'+ str(q) +'_fix'\n",
    "    if folder_exists(folder_path):\n",
    "    \n",
    "        fix_X, fix_Y, img_name = load_fix_from_folder('S_fix/S0'+ str(q) +'_fix')\n",
    "\n",
    "        # Replace 'path/to/your/folder' with the desired folder path\n",
    "        folder_path = 'DG3_heatmaps/S0'+ str(q) +'_fix'\n",
    "        create_folder(folder_path)\n",
    "\n",
    "\n",
    "        for i in range(len(img_name)):\n",
    "\n",
    "            image = cv2.imread('/home/pranjul/DeepGaze/fix_stimuli/' + img_name[i])\n",
    "\n",
    "            if image is not None and len(fix_X[i]) > 3 and len(fix_Y[i] > 3):\n",
    "\n",
    "                # location of previous scanpath fixations in x and y (pixel coordinates), starting with the initial fixation on the image.\n",
    "                #fixation_history_x = np.array([1024//2, 300, 500, 200, 200, 700])\n",
    "                #fixation_history_y = np.array([768//2, 300, 100, 300, 100, 500])\n",
    "\n",
    "                #print(img_name[i])\n",
    "\n",
    "                fixation_history_x = fix_X[i]/3\n",
    "                #print(fixation_history_x)\n",
    "                fixation_history_y = fix_Y[i]/3\n",
    "\n",
    "                # load precomputed centerbias log density (from MIT1003) over a 1024x1024 image\n",
    "                # you can download the centerbias from https://github.com/matthias-k/DeepGaze/releases/download/v1.0.0/centerbias_mit1003.npy\n",
    "                # alternatively, you can use a uniform centerbias via `centerbias_template = np.zeros((1024, 1024))`.\n",
    "                centerbias_template = np.load('centerbias_mit1003.npy')\n",
    "                \n",
    "                # rescale to match image size\n",
    "                centerbias = zoom(centerbias_template, (image.shape[0]/centerbias_template.shape[0], image.shape[1]/centerbias_template.shape[1]), order=0, mode='nearest')\n",
    "                # renormalize log density\n",
    "                centerbias -= logsumexp(centerbias)\n",
    "\n",
    "                image_tensor = torch.tensor([image.transpose(2, 0, 1)]).to(DEVICE)\n",
    "                centerbias_tensor = torch.tensor([centerbias]).to(DEVICE)\n",
    "                x_hist_tensor = torch.tensor([fixation_history_x[model.included_fixations]]).to(DEVICE)\n",
    "                y_hist_tensor = torch.tensor([fixation_history_y[model.included_fixations]]).to(DEVICE)\n",
    "\n",
    "                log_density_prediction = model(image_tensor, centerbias_tensor, x_hist_tensor, y_hist_tensor)\n",
    "\n",
    "                # Scale factor\n",
    "                #scale_factor = 3\n",
    "\n",
    "                # Calculate the new width and height\n",
    "                #new_width = image.shape[1] * scale_factor\n",
    "                #new_height = image.shape[0] * scale_factor\n",
    "\n",
    "                # Resize the image using cv2.resize()\n",
    "                #image = cv2.resize(image, (new_width, new_height))\n",
    "\n",
    "                image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)\n",
    "\n",
    "\n",
    "                f, axs = plt.subplots(nrows=1, ncols=2, figsize=(16, 9))\n",
    "                axs[0].imshow(image)\n",
    "                #axs[0].plot(fixation_history_x, fixation_history_y, 'o-', color='red')\n",
    "                #axs[0].scatter(fixation_history_x[-1], fixation_history_y[-1], 100, color='yellow', zorder=100)\n",
    "                axs[0].set_axis_off()\n",
    "                axs[1].matshow(log_density_prediction.detach().cpu().numpy()[0, 0])  # first image in batch, first (and only) channel\n",
    "                #axs[1].plot(fixation_history_x, fixation_history_y, 'o-', color='red')\n",
    "                #axs[1].scatter(fixation_history_x[-1], fixation_history_y[-1], 100, color='yellow', zorder=100)\n",
    "                axs[1].set_axis_off()\n",
    "                plt.savefig(os.path.join('DG3_heatmaps/S0'+ str(q) +'_fix', img_name[i]))\n",
    "                plt.close()\n",
    "                #break\n",
    "        #break\n",
    "    #break"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "bb2809f0",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4a041477",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a0baeecb",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "70e54f03",
   "metadata": {},
   "outputs": [],
   "source": [
    "len(fixation_history_y)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "16ec0624",
   "metadata": {},
   "outputs": [],
   "source": [
    "i"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "964e517a",
   "metadata": {},
   "outputs": [],
   "source": [
    "S02_img_name[244]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "67397109",
   "metadata": {},
   "outputs": [],
   "source": [
    "np.where(np.array(S02_img_name) == '44.jpg')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "02cd8a6b",
   "metadata": {},
   "outputs": [],
   "source": [
    "indices = np.where(arr == 2)[0]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a64314eb",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "09b449d7",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f2e3afae",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f8433595",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "11bb0a30",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "852d1d54",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "45392af9",
   "metadata": {},
   "outputs": [],
   "source": [
    "img.shape"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "93a09086",
   "metadata": {
    "scrolled": true
   },
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "from scipy.misc import face\n",
    "from scipy.ndimage import zoom\n",
    "from scipy.special import logsumexp\n",
    "import torch\n",
    "import matplotlib.pyplot as plt\n",
    "\n",
    "import deepgaze_pytorch\n",
    "\n",
    "DEVICE = 'cuda'\n",
    "\n",
    "# you can use DeepGazeI or DeepGazeIIE\n",
    "model = deepgaze_pytorch.DeepGazeI(pretrained=True).to(DEVICE)\n",
    "\n",
    "# image = face()\n",
    "\n",
    "x = {}\n",
    "\n",
    "for i in range(len(image_paths)):\n",
    "    print(i)\n",
    "    \n",
    "    image = cv2.imread(image_paths[i])\n",
    "    \n",
    "    # load precomputed centerbias log density (from MIT1003) over a 1024x1024 image\n",
    "    # you can download the centerbias from https://github.com/matthias-k/DeepGaze/releases/download/v1.0.0/centerbias_mit1003.npy\n",
    "    # alternatively, you can use a uniform centerbias via `centerbias_template = np.zeros((1024, 1024))`.\n",
    "    centerbias_template = np.load('centerbias_mit1003.npy')\n",
    "    # rescale to match image size\n",
    "    centerbias = zoom(centerbias_template, (image.shape[0]/centerbias_template.shape[0], image.shape[1]/centerbias_template.shape[1]), order=0, mode='nearest')\n",
    "    # renormalize log density\n",
    "    centerbias -= logsumexp(centerbias)\n",
    "\n",
    "    image_tensor = torch.tensor([image.transpose(2, 0, 1)]).to(DEVICE)\n",
    "    centerbias_tensor = torch.tensor([centerbias]).to(DEVICE)\n",
    "\n",
    "    log_density_prediction = model(image_tensor, centerbias_tensor)\n",
    "    \n",
    "    #a = log_density_prediction.detach().cpu().numpy()[0, 0]\n",
    "    \n",
    "    #x[img_name[i].split('.')[0]] = a\n",
    "    \n",
    "    \n",
    "    f, axs = plt.subplots(nrows=1, ncols=2, figsize=(16, 9))\n",
    "    axs[0].imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))\n",
    "    # axs[0].plot(fixation_history_x, fixation_history_y, 'o-', color='red')\n",
    "    # axs[0].scatter(fixation_history_x[-1], fixation_history_y[-1], 100, color='yellow', zorder=100)\n",
    "    axs[0].set_axis_off()\n",
    "    axs[1].matshow(log_density_prediction.detach().cpu().numpy()[0, 0])  # first image in batch, first (and only) channel\n",
    "    # axs[1].plot(fixation_history_x, fixation_history_y, 'o-', color='red')\n",
    "    # axs[1].scatter(fixation_history_x[-1], fixation_history_y[-1], 100, color='yellow', zorder=100)\n",
    "    axs[1].set_axis_off()\n",
    "    plt.savefig(os.path.join('DG2_modified_imgs_heatmaps', '{0}.jpg'.format(i)))\n",
    "    \n",
    "    \n",
    "    #break"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3e4e709a",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "2bd1220a",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "60141a51",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 120,
   "id": "d2f42e76",
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Loaded pretrained weights for efficientnet-b5\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Using cache found in /home/pranjul/.cache/torch/hub/pytorch_vision_v0.6.0\n",
      "Using cache found in /home/pranjul/.cache/torch/hub/pytorch_vision_v0.6.0\n"
     ]
    }
   ],
   "source": [
    "import numpy as np\n",
    "from scipy.misc import face\n",
    "from scipy.ndimage import zoom\n",
    "from scipy.special import logsumexp\n",
    "import torch\n",
    "import matplotlib.pyplot as plt\n",
    "\n",
    "import deepgaze_pytorch\n",
    "\n",
    "DEVICE = 'cuda'\n",
    "\n",
    "# you can use DeepGazeI or DeepGazeIIE\n",
    "model = deepgaze_pytorch.DeepGazeIIE(pretrained=True).to(DEVICE)\n",
    "\n",
    "# image = face()\n",
    "x = {}\n",
    "\n",
    "\n",
    "for i in range(len(imgs)):\n",
    "    \n",
    "    image = imgs[i]\n",
    "    \n",
    "    # load precomputed centerbias log density (from MIT1003) over a 1024x1024 image\n",
    "    # you can download the centerbias from https://github.com/matthias-k/DeepGaze/releases/download/v1.0.0/centerbias_mit1003.npy\n",
    "    # alternatively, you can use a uniform centerbias via `centerbias_template = np.zeros((1024, 1024))`.\n",
    "    centerbias_template = np.load('centerbias_mit1003.npy')\n",
    "    # centerbias_template = np.zeros((1024, 1024))\n",
    "    # rescale to match image size\n",
    "    centerbias = zoom(centerbias_template, (image.shape[0]/centerbias_template.shape[0], image.shape[1]/centerbias_template.shape[1]), order=0, mode='nearest')\n",
    "    # renormalize log density\n",
    "    centerbias -= logsumexp(centerbias)\n",
    "\n",
    "    image_tensor = torch.tensor([image.transpose(2, 0, 1)]).to(DEVICE)\n",
    "    centerbias_tensor = torch.tensor([centerbias]).to(DEVICE)\n",
    "\n",
    "    log_density_prediction = model(image_tensor, centerbias_tensor)\n",
    "    \n",
    "    a = log_density_prediction.detach().cpu().numpy()[0,0]\n",
    "    \n",
    "    x[img_name[i].split('.')[0]] = a\n",
    "    \n",
    "    '''\n",
    "    f, axs = plt.subplots(nrows=1, ncols=2, figsize=(16, 9))\n",
    "    axs[0].imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))\n",
    "    # axs[0].plot(fixation_history_x, fixation_history_y, 'o-', color='red')\n",
    "    # axs[0].scatter(fixation_history_x[-1], fixation_history_y[-1], 100, color='yellow', zorder=100)\n",
    "    axs[0].set_axis_off()\n",
    "    axs[1].matshow(log_density_prediction.detach().cpu().numpy()[0, 0])  # first image in batch, first (and only) channel\n",
    "    # axs[1].plot(fixation_history_x, fixation_history_y, 'o-', color='red')\n",
    "    # axs[1].scatter(fixation_history_x[-1], fixation_history_y[-1], 100, color='yellow', zorder=100)\n",
    "    axs[1].set_axis_off()\n",
    "    #plt.savefig(os.path.join('DG2_heatmaps_wardle/objects', '{0}.jpg'.format(i)))\n",
    "    #plt.close()\n",
    "    '''\n",
    "    \n",
    "    #break"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 93,
   "id": "66b567f5",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "32"
      ]
     },
     "execution_count": 93,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "len(x)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7ff18bc4",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "6adc2488",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "406098dd",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(224, 224)"
      ]
     },
     "execution_count": 10,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "x['face17']"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "id": "29d5f56b",
   "metadata": {},
   "outputs": [],
   "source": [
    "import pickle"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 26,
   "id": "d4794c03",
   "metadata": {},
   "outputs": [],
   "source": [
    "with open('/home/pranjul/BranchingNets/wardle_occ_heatmaps.pkl', 'rb') as file:\n",
    "    x_loaded = pickle.load(file)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 40,
   "id": "537a6763",
   "metadata": {},
   "outputs": [],
   "source": [
    "x_loaded_faces = {}\n",
    "x_loaded_objects = {}\n",
    "\n",
    "\n",
    "for item in x_loaded:\n",
    "    x_loaded_faces[item[2]] = item[0]\n",
    "    x_loaded_objects[item[2]] = item[1]\n",
    "    #print(item)\n",
    "    #break"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "57f8e22f",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b4ae8628",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 32,
   "id": "f5db452d",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'face01'"
      ]
     },
     "execution_count": 32,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "item[2]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "83bf9be6",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 43,
   "id": "26527272",
   "metadata": {},
   "outputs": [],
   "source": [
    "import glob\n",
    "from scipy.io import loadmat\n",
    "from scipy.stats import pearsonr, spearmanr\n",
    "from sklearn.preprocessing import MinMaxScaler\n",
    "\n",
    "scaler = MinMaxScaler()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3938f5cb",
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "y_faces = {}\n",
    "\n",
    "for filename in glob.glob('/home/pranjul/DeepGaze/heatmaps/faces/*.mat'): #assuming gif\n",
    "    \n",
    "    fn=loadmat(filename)\n",
    "    y_faces[filename.split('/')[-1].split('.')[0]] = fn\n",
    "    #break"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c5902106",
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "y_objects = {}\n",
    "\n",
    "for filename in glob.glob('/home/pranjul/DeepGaze/heatmaps/objects/*.mat'): #assuming gif\n",
    "    \n",
    "    fn=loadmat(filename)\n",
    "    y_objects[filename.split('/')[-1].split('.')[0]] = fn\n",
    "    #break"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e6fa7c47",
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "y_pareidolia = {}\n",
    "\n",
    "for filename in glob.glob('/home/pranjul/DeepGaze/heatmaps/pareidolia/*.mat'): #assuming gif\n",
    "    \n",
    "    fn=loadmat(filename)\n",
    "    y_pareidolia[filename.split('/')[-1].split('.')[0]] = fn\n",
    "    #break"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "90d31035",
   "metadata": {},
   "outputs": [],
   "source": [
    "y_pareidolia['2']['a']"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c416a753",
   "metadata": {},
   "outputs": [],
   "source": [
    "plt.imshow(y_pareidolia['2']['a'])\n",
    "plt.axis('off')\n",
    "plt.tight_layout()\n",
    "plt.savefig('HG_mars_face.png', dpi=600)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f0a6bda6",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 58,
   "id": "1efa24c6",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "32"
      ]
     },
     "execution_count": 58,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "len(x)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "0c0d87dc",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "603b9855",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 50,
   "id": "a2166932",
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "face17\n",
      "face21\n",
      "face09\n",
      "face25\n",
      "face30\n",
      "face08\n",
      "face22\n",
      "face14\n",
      "face20\n",
      "face27\n",
      "face32\n",
      "face03\n",
      "face26\n",
      "face04\n",
      "face01\n",
      "face12\n",
      "face10\n",
      "face15\n",
      "face29\n",
      "face28\n",
      "face02\n",
      "face11\n",
      "face18\n",
      "face16\n",
      "face24\n",
      "face13\n",
      "face31\n",
      "face23\n",
      "face06\n",
      "face05\n",
      "face07\n",
      "face19\n"
     ]
    }
   ],
   "source": [
    "dg_faces = []\n",
    "eg_faces = []\n",
    "ke = []\n",
    "correlation_coef_faces_faces = []\n",
    "\n",
    "for k in x:\n",
    "    if k in x_loaded_faces:\n",
    "        print(k)\n",
    "        ke.append(k)\n",
    "        #print(np.shape(x[k]))\n",
    "        #print(y_faces[k])\n",
    "        #dg_faces.append(scaler.fit_transform(np.array(x[k])).flatten())\n",
    "        #eg_faces.append(scaler.fit_transform(np.array(y_faces[k]['a'])).flatten())\n",
    "        correlation_coef_faces_faces.append(spearmanr(np.array(x[k]).flatten(),\n",
    "                                                np.array(x_loaded_faces[k]).flatten())[0])\n",
    "        #correlation_coef = spearmanr(np.array(dg_faces).flatten(), np.array(eg_faces).flatten())\n",
    "\n",
    "    #break\n",
    "\n",
    "#spearmanr(scaler.fit_transform(cv2.resize(x['1397'], (800, 600))).flatten(), scaler.fit_transform(y_faces['1397']['a']).flatten())[0]\n",
    "\n",
    "    \n",
    "# correlation_coef, p_value = spearmanr(np.array(dg_faces).flatten(), np.array(eg_faces).flatten())\n",
    "# correlation_coef = np.corrcoef(np.array(dg_faces).flatten(), np.array(eg_faces).flatten())\n",
    "# print(\"Correlation coefficient:\", correlation_coef)\n",
    "# print(\"p-value:\", p_value)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 51,
   "id": "c0881d58",
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[0.5099971236483624,\n",
       " -0.026241441654449738,\n",
       " -0.020265497284517868,\n",
       " 0.4063251070588855,\n",
       " 0.3240486077872093,\n",
       " 0.14445891512623224,\n",
       " 0.41308937854116157,\n",
       " -0.004552731801563413,\n",
       " -0.14629130014113925,\n",
       " -0.17796472766216587,\n",
       " 0.10823127634439098,\n",
       " -0.1036388726439182,\n",
       " 0.4898634291550803,\n",
       " -0.14191138835482203,\n",
       " 0.17017885053080817,\n",
       " -0.0685674257711077,\n",
       " 0.19682761161570433,\n",
       " -0.024932307629548577,\n",
       " 0.09085146063083599,\n",
       " 0.10724614767610752,\n",
       " 0.1275757155386799,\n",
       " -0.005531245817122926,\n",
       " 0.12811042722444704,\n",
       " 0.2126234622472742,\n",
       " 0.2906153059519458,\n",
       " 0.07419028017113186,\n",
       " 0.3159197415696739,\n",
       " 0.22620924722727126,\n",
       " 0.319571617490123,\n",
       " 0.4698188770871277,\n",
       " -0.4681449719330817,\n",
       " 0.005253650225882409]"
      ]
     },
     "execution_count": 51,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "correlation_coef_faces_faces"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 52,
   "id": "723cc7fe",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "0.12321763506734057"
      ]
     },
     "execution_count": 52,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "np.mean(correlation_coef_faces_faces)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 53,
   "id": "52e9c3ac",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "0.2183971606517001"
      ]
     },
     "execution_count": 53,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "np.std(correlation_coef_faces_faces)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 54,
   "id": "c187f3a1",
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[<matplotlib.lines.Line2D at 0x7f590eb1bc40>]"
      ]
     },
     "execution_count": 54,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAD4CAYAAADvsV2wAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAShUlEQVR4nO3dfYxc1X3G8edhsdsVkC4Ey9iLG7ut5SqNK5yOkCLSFKVQk/6BXTflJUU1UiRXTZGoaKyYIqUpUWUnbqL8UZTWTSI5UVuHEsdYgsohGJS2SqjHMcEB5OAgUrwYvGnqtCib8PbrH3sXxmZ2d3bmzn0734+EPHPnsvdc3d1nz/7Ouec6IgQAaL5zym4AAKAYBD4AJILAB4BEEPgAkAgCHwAScW7ZDZjNxRdfHCtXriy7GQBQK4cPH/5hRCzp9lllA3/lypVqt9tlNwMAasX2D2b7jJIOACSCwAeARBD4AJAIAh8AEkHgA0AiKjtLp1/7jkxo54Fjeu70lJaPjWrr+jXauG687GYBQOkaFfj7jkzo9r1HNfXyq5KkidNTun3vUUki9AEkr1ElnZ0Hjr0e9jOmXn5VOw8cK6lFAFAdjQr8505PLWg7AKSkUSWd5WOjmugS7svHRktoDfLCuAyQj0b18LeuX6PRRSNnbBtdNKKt69eU1CIMamZcZuL0lEJvjMvsOzJRdtOA2mlU4G9cN67tm9ZqfGxUljQ+Nqrtm9bSG6wxxmWA/DSqpCNNhz4B3xyMywD5aVzgo1kYl0GV1W18qVElHTQP4zKoqjqOLxH4qDTGZVBVdRxfoqSDymNcBlVUx/ElevgA0IfZxpGqPL5E4ANAH+o4vkRJBwD6MFNmrNMsHQIfAPpUt/ElSjoAkAgCHwASQeADQCIIfABIBIO2NVa3dTwAlIvAz0EZwcvzewEsVC4lHdvX2D5m+7jtbXPs9/u2w3Yrj+NWQVkLKNVxHQ8A5Ro48G2PSLpL0vskvV3Sjbbf3mW/CyTdKumRQY9ZJWUFbx3X8QBQrjx6+JdLOh4RT0fES5L2SNrQZb+PS/qEpJ/mcMzKKCt467iOB4By5RH445Ke7Xh/Itv2OtvvlLQiIu6b6wvZ3mK7bbs9OTmZQ9OGr6zgreM6HgDKNfRpmbbPkfRpSX8+374RsSsiWhHRWrJkybCblouygpd14gEsVB6zdCYkreh4f2m2bcYFkt4h6WHbknSJpP22r42Idg7HL1WZCyjVbR0PAOXKI/APSVpte5Wmg/4GSR+Y+TAifizp4pn3th+W9OEmhP0MghdAHQxc0omIVyTdIumApCcl3R0Rj9u+0/a1g359AEA+crnxKiLul3T/Wds+Osu+V+ZxTADAwrCWDgAkgsAHgEQQ+ACQCAIfABJB4ANAIgh8AEgEgQ8AieABKAXiCVUAykTgF4QnVAHDlXeHqokdNEo6BeEJVcDw5P3kubKeZDdsBH5BeEIVMDx5d6ia2kEj8AvCE6qA4cm7Q9XUDhqBXxCeUAUMT94dqqZ20Aj8gvCEKmB48u5QNbWDxiydAvGgFOANec6CyfvJc2U+yW6YHBFlt6GrVqsV7XZjHooFoMPZ05Sl6R40f/UOzvbhiGh1+4ySDoDCNXUWTNUR+AAK19RZMFVH4AMoXFNnwVQdgQ+gcE2dBVN1zNIBULimzoKpOgIfQCmYplw8SjoAkAgCHwASQeADQCIIfABIBIEPAIlglg6ApDTx0YW9IvABJCP1Z0sT+AByVeUe9FyLtlWljcNE4APITdV70Kkv2sagLYDcVH3Z49QXbcsl8G1fY/uY7eO2t3X5/DbbT9h+zPaDtt+Wx3EBVEvVe9CpL9o2cEnH9oikuyRdLemEpEO290fEEx27HZHUioif2P4TSZ+UdP2gxwaqoMo166ItHxvVRJdwr0oPOvVF2/Ko4V8u6XhEPC1JtvdI2iDp9cCPiIc69v+WpJtyOC5QuqrXrIu2df2aro8urFIPOuVF2/Io6YxLerbj/Yls22w+KOlfu31ge4vttu325ORkDk0DhqvqNeuibVw3ru2b1mp8bFSWND42ynNqK6TQWTq2b5LUkvRb3T6PiF2SdknTDzEvsGlAX6pesy5Dyj3oqsujhz8haUXH+0uzbWewfZWkOyRdGxE/y+G4QOlSn/WBeskj8A9JWm17le3Fkm6QtL9zB9vrJP29psP+VA7HBPq278iErthxUKu23acrdhzUviNv6p/0LPVZH6iXgUs6EfGK7VskHZA0IukLEfG47TsltSNiv6Sdks6X9C+2Jem/IuLaQY8NLFTeg6ypz/pAvTiimqXyVqsV7Xa77GagYa7YcbDrtMHxsVH9x7b3ltAiIF+2D0dEq9tn3GmLpDDIipQR+EgKg6xIGYFfQXkOKuJMDLIiZayWWTHcuTlcDLIiZQR+xaS+XncRuDEIqSLwK4ZBRVQZC8XVG4FfMVVfbRD1kmdAU26sPwZtK4ZBReRlJqAnTk8p9EZA9zsJgIXi6o/ArxhWG0Re8g5oyo31R0mngpowqEitt3x5BzTlxvqjh4/c5V1KwJv1cq9G3jeZUW6sPwIfuaPWO1y9/kLNO6ApN9YfJR3kjlrvcPV6r8YwbjJrQrkxZQQ+ckett3+9jH0s5BcqAY1OlHSQO2q9/em1VMMCcOgXgY/cUevtT69jH/xCRb8o6WAoKCUsXK+lmtQWgGOKb34IfKAiFjL2kcovVJZzyBclHaAiKNW8GVN880UPH6iI1Eo1vWCKb74IfKBCUinV9IopvvmipAOgsihz5YsePoDKosyVLwIfQKVR5soPJR0ASASBDwCJIPABIBEEPgAkgsAHgEQQ+ACQCKZlAkBFDHtl0Fx6+LavsX3M9nHb27p8/nO2v5x9/ojtlXkcFwCaotcH4Axi4B6+7RFJd0m6WtIJSYds74+IJzp2+6Ck/4mIX7F9g6RPSLp+0GNjfqwljl7wfVK+Xp9VPIg8eviXSzoeEU9HxEuS9kjacNY+GyTtzl7fI+m3bTuHY2MORfQYUH98n1RDESuD5hH445Ke7Xh/ItvWdZ+IeEXSjyW99ewvZHuL7bbt9uTkZA5NSxtriaMXfJ9UQxHPKq7ULJ2I2BURrYhoLVmypOzmaN+RCV2x46BWbbtPV+w4WLseD2uJoxd8n1RDESuD5jFLZ0LSio73l2bbuu1zwva5kn5B0n/ncOyhacKj1VhLvFqqWifn+6QailgZNI/APyRpte1Vmg72GyR94Kx99kvaLOmbkt4v6WBERA7H7ksvP3hFDKAM29b1a874pSWxlnhZqtyB4PukOoa9MujAJZ2sJn+LpAOSnpR0d0Q8bvtO29dmu31e0lttH5d0m6Q3Td0sSq8DVE34M3fjunFt37RW42OjsqTxsVFt37S29IBJUZXr5HyfpCOXG68i4n5J95+17aMdr38q6Q/yONageu25N+XPXNYSr4aqdyD4PklDpQZti9DrDx6PVkOeipiBAcwnucDv9QePP3ORJzoQqILk1tJZyAAVf+YiLzybFVWQXODzg4ey0IFA2ZILfIkfPABpSjLwgV5U9UYpoF8EPtBFlW+UAvqV3CwdoBdVvlEK6BeBD3RR9RulgH4Q+EAX3CiFJiLwgS64UQpNxKAt0AX3a6CJCHyUqspTH7lfA01D4KM0TH0EikUNH6Vh6iNQLAIfpWHqI1AsAh+lYeojUCwCH6Vh6iNQLAZtURqmPgLFIvBRKqY+AsUh8NEYVZ7TD1QBgQ9J9Q9L5vQD82PQFq+H5cTpKYXeCMt9RybKblrPmNMPzI/ARyPCkjn9wPwIfDQiLJnTD8yPwEcjwpI5/cD8CHw0Iiw3rhvX9k1rNT42KksaHxvV9k1rGbAFOjBLBwu6AarKs3mY0w/MjcCHpN7CkqmPQL1R0kHPmjCbB0gZgY+eNWE2D5AyAh89a8JsHiBlAwW+7YtsP2D7qezfC7vsc5ntb9p+3PZjtq8f5JgoTxNm8wApG7SHv03SgxGxWtKD2fuz/UTSH0XEr0m6RtJnbI8NeFyUgKmPQL0NOktng6Qrs9e7JT0s6SOdO0TE9zpeP2f7lKQlkk4PeGyUgKmPQH0N2sNfGhEns9fPS1o61862L5e0WNL3Z/l8i+227fbk5OSATQMAdJq3h2/765Iu6fLRHZ1vIiJsxxxfZ5mkL0naHBGvddsnInZJ2iVJrVZr1q8FAFi4eQM/Iq6a7TPbL9heFhEns0A/Nct+b5F0n6Q7IuJbfbcWANC3QUs6+yVtzl5vlnTv2TvYXizpq5K+GBH3DHg8AECfBg38HZKutv2UpKuy97Ldsv25bJ/rJL1H0s22H83+u2zA4wIAFsgR1SyVt1qtaLfbZTcDAGrF9uGIaHX7jDttASARBD4AJILAB4BEEPgAkAgCHwASQeADQCIIfABIBIEPAIkg8AEgEQQ+ACSCwAeARBD4AJAIAh8AEkHgA0AiCHwASASBDwCJIPABIBEEPgAkgsAHgEQQ+ACQCAIfABJB4ANAIgh8AEgEgQ8AiSDwASARBD4AJILAB4BEEPgAkAgCHwASQeADQCIIfABIxECBb/si2w/Yfir798I59n2L7RO2/3aQYwIA+jNoD3+bpAcjYrWkB7P3s/m4pG8MeDwAQJ8GDfwNknZnr3dL2thtJ9u/IWmppK8NeDwAQJ8GDfylEXEye/28pkP9DLbPkfQpSR+e74vZ3mK7bbs9OTk5YNMAAJ3OnW8H21+XdEmXj+7ofBMRYTu67PchSfdHxAnbcx4rInZJ2iVJrVar29cCAPRp3sCPiKtm+8z2C7aXRcRJ28skneqy27sk/abtD0k6X9Ji2y9GxFz1fgBAzuYN/Hnsl7RZ0o7s33vP3iEi/nDmte2bJbUIewAo3qA1/B2Srrb9lKSrsvey3bL9uUEbBwDIjyOqWSpvtVrRbrfLbgYA1IrtwxHR6vYZd9oCQCIIfABIBIEPAIkg8AEgEQQ+ACRi0Hn4AIB57DsyoZ0Hjum501NaPjaqrevXaOO68cLbQeADwBDtOzKh2/ce1dTLr0qSJk5P6fa9RyWp8NCnpAMAQ7TzwLHXw37G1MuvaueBY4W3hcAHgCF67vTUgrYPE4EPAEO0fGx0QduHicAHgCHaun6NRheNnLFtdNGItq5fU3hbGLQFgCGaGZhllg4AJGDjuvFSAv5slHQAIBEEPgAkgsAHgEQQ+ACQCAIfABJR2Ucc2p6U9IMBvsTFkn6YU3PKwjlUA+dQDZxDb94WEUu6fVDZwB+U7fZsz3WsC86hGjiHauAcBkdJBwASQeADQCKaHPi7ym5ADjiHauAcqoFzGFBja/gAgDM1uYcPAOhA4ANAIhoX+LavsX3M9nHb28puTz9sP2P7qO1HbbfLbk+vbH/B9inb3+3YdpHtB2w/lf17YZltnM8s5/Ax2xPZ9XjU9u+W2ca52F5h+yHbT9h+3Pat2fbaXIc5zqE210GSbP+87f+0/Z3sPP4q277K9iNZRn3Z9uLC2tSkGr7tEUnfk3S1pBOSDkm6MSKeKLVhC2T7GUmtiKjVTSa23yPpRUlfjIh3ZNs+KelHEbEj+wV8YUR8pMx2zmWWc/iYpBcj4m/KbFsvbC+TtCwivm37AkmHJW2UdLNqch3mOIfrVJPrIEm2Lem8iHjR9iJJ/y7pVkm3SdobEXts/52k70TEZ4toU9N6+JdLOh4RT0fES5L2SNpQcpuSERHfkPSjszZvkLQ7e71b0z+4lTXLOdRGRJyMiG9nr/9P0pOSxlWj6zDHOdRKTHsxe7so+y8kvVfSPdn2Qq9F0wJ/XNKzHe9PqIbfKJr+pvia7cO2t5TdmAEtjYiT2evnJS0tszEDuMX2Y1nJp7LlkE62V0paJ+kR1fQ6nHUOUs2ug+0R249KOiXpAUnfl3Q6Il7Jdik0o5oW+E3x7oh4p6T3SfrTrMxQezFdP6xjDfGzkn5Z0mWSTkr6VKmt6YHt8yV9RdKfRcT/dn5Wl+vQ5Rxqdx0i4tWIuEzSpZquQPxqme1pWuBPSFrR8f7SbFutRMRE9u8pSV/V9DdKXb2Q1WRnarOnSm7PgkXEC9kP7muS/kEVvx5Zvfgrkv4xIvZmm2t1HbqdQ92uQ6eIOC3pIUnvkjRme+bxsoVmVNMC/5Ck1dko+GJJN0jaX3KbFsT2edlAlWyfJ+l3JH137v+r0vZL2py93izp3hLb0peZoMz8nip8PbKBws9LejIiPt3xUW2uw2znUKfrIEm2l9gey16PanoyyZOaDv73Z7sVei0aNUtHkrKpWp+RNCLpCxHx1+W2aGFs/5Kme/XS9EPm/6ku52D7nyVdqeklYF+Q9JeS9km6W9Ivanq56+siorKDorOcw5WaLiOEpGck/XFHPbxSbL9b0r9JOirptWzzX2i6Bl6L6zDHOdyomlwHSbL965oelB3RdOf67oi4M/sZ3yPpIklHJN0UET8rpE1NC3wAQHdNK+kAAGZB4ANAIgh8AEgEgQ8AiSDwASARBD4AJILAB4BE/D/J0K/Pj3+ffQAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "plt.plot(correlation_coef_faces_faces, 'o')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3ae14f24",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 59,
   "id": "60c0c99f",
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "face17\n",
      "face21\n",
      "face09\n",
      "face25\n",
      "face30\n",
      "face08\n",
      "face22\n",
      "face14\n",
      "face20\n",
      "face27\n",
      "face32\n",
      "face03\n",
      "face26\n",
      "face04\n",
      "face01\n",
      "face12\n",
      "face10\n",
      "face15\n",
      "face29\n",
      "face28\n",
      "face02\n",
      "face11\n",
      "face18\n",
      "face16\n",
      "face24\n",
      "face13\n",
      "face31\n",
      "face23\n",
      "face06\n",
      "face05\n",
      "face07\n",
      "face19\n"
     ]
    }
   ],
   "source": [
    "dg_faces = []\n",
    "eg_faces = []\n",
    "ke = []\n",
    "correlation_coef_faces_objects = []\n",
    "\n",
    "for k in x:\n",
    "    if k in x_loaded_objects:\n",
    "        print(k)\n",
    "        ke.append(k)\n",
    "        #print(np.shape(x[k]))\n",
    "        #print(y_faces[k])\n",
    "        #dg_faces.append(scaler.fit_transform(np.array(x[k])).flatten())\n",
    "        #eg_faces.append(scaler.fit_transform(np.array(y_faces[k]['a'])).flatten())\n",
    "        correlation_coef_faces_objects.append(spearmanr(np.array(x[k]).flatten(),\n",
    "                                                np.array(x_loaded_objects[k]).flatten())[0])\n",
    "        #correlation_coef = spearmanr(np.array(dg_faces).flatten(), np.array(eg_faces).flatten())\n",
    "\n",
    "    #break\n",
    "\n",
    "#spearmanr(scaler.fit_transform(cv2.resize(x['1397'], (800, 600))).flatten(), scaler.fit_transform(y_faces['1397']['a']).flatten())[0]\n",
    "\n",
    "    \n",
    "# correlation_coef, p_value = spearmanr(np.array(dg_faces).flatten(), np.array(eg_faces).flatten())\n",
    "# correlation_coef = np.corrcoef(np.array(dg_faces).flatten(), np.array(eg_faces).flatten())\n",
    "# print(\"Correlation coefficient:\", correlation_coef)\n",
    "# print(\"p-value:\", p_value)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 60,
   "id": "69371b68",
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[-0.5099854364525329,\n",
       " 0.026259847989443807,\n",
       " 0.020178856104569327,\n",
       " -0.40632977483144384,\n",
       " -0.32404317604152766,\n",
       " -0.14419952890322452,\n",
       " -0.41308012768473323,\n",
       " 0.004591193915821278,\n",
       " 0.146371090379725,\n",
       " 0.17796479406162266,\n",
       " -0.10821486907892959,\n",
       " 0.10364029161797932,\n",
       " -0.4898773143716616,\n",
       " 0.1419109655373156,\n",
       " -0.1701768781333115,\n",
       " 0.06856814793345584,\n",
       " -0.19683195920689806,\n",
       " 0.024874697565342434,\n",
       " -0.09085705460991511,\n",
       " -0.10723372454340571,\n",
       " -0.12759346225445095,\n",
       " 0.0055338842134646194,\n",
       " -0.12810119374303117,\n",
       " -0.2126253521598383,\n",
       " -0.29067044765817596,\n",
       " -0.07419893928510361,\n",
       " -0.31591976903664726,\n",
       " -0.2258328088478649,\n",
       " -0.31963421300215394,\n",
       " -0.46981888362533153,\n",
       " 0.46814724548718833,\n",
       " -0.0052516212065825164]"
      ]
     },
     "execution_count": 60,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "correlation_coef_faces_objects"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 61,
   "id": "0b4a71fa",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "-0.12320110999596359"
      ]
     },
     "execution_count": 61,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "np.mean(correlation_coef_faces_objects)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 62,
   "id": "27d053c3",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "0.2183951924561227"
      ]
     },
     "execution_count": 62,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "np.std(correlation_coef_faces_objects)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 63,
   "id": "c9dba524",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[<matplotlib.lines.Line2D at 0x7f590d83dbb0>]"
      ]
     },
     "execution_count": 63,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAD4CAYAAADvsV2wAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAASp0lEQVR4nO3db4xcV3nH8e+DcdoVf7oJWaXxJsZpm7qNCMJ0lRaF0oiGOukL7KYoSiiSkUBuRSNR0Vo4RaI0CMXgQvsCRJsWpABtkzQEYylpXcAg2qqkWeNASCITEwXFmxAbgmmjupCEpy92lqzXs+vdnTtz/5zvR7I8c+d677me2d/c+5xzz43MRJLUfc+ruwGSpNEw8CWpEAa+JBXCwJekQhj4klSI59fdgMWcffbZuWHDhrqbIUmtcuDAge9m5kS/1xob+Bs2bGB6erruZkhSq0TEtxd7zZKOJBXCwJekQhj4klQIA1+SCmHgS1IhGjtKR5K6Ys/BGXbvO8Rjx0+wbnyMHZs3snXT5MjbYeBL0hDtOTjD9Xfcx4mnnwVg5vgJrr/jPoCRh74lHUkaot37Dv0k7OecePpZdu87NPK2GPiSNESPHT+xouXDZOBL0hCtGx9b0fJhMvAlaYh2bN7I2No1Jy0bW7uGHZs3jrwtdtpK0hDNdcw6SkeSCrB102QtAb+QJR1JKoSBL0mFMPAlqRAGviQVwsCXpEIY+JJUiEoCPyKuiIhDEXE4InYusd7vRkRGxFQV25UkLd/AgR8Ra4CPAFcCFwHXRsRFfdZ7EfB24O5BtylJWrkqjvAvAQ5n5sOZ+SPgFmBLn/XeC7wf+L8KtilJWqEqAn8SeHTe8yO9ZT8REa8Ezs/MO5f6QRGxPSKmI2L62LFjFTRNkjRn6J22EfE84EPAH59u3cy8KTOnMnNqYmJi2E2TpKJUEfgzwPnznp/XWzbnRcDLgC9FxCPArwF77biVpNGqIvDvAS6MiAsi4gzgGmDv3IuZ+YPMPDszN2TmBuArwOszc7qCbUuSlmngwM/MZ4DrgH3Ag8BtmXl/RNwQEa8f9OdLkqpRyfTImXkXcNeCZe9eZN3LqtimJGllvNJWkgph4EtSIQx8SSqEgS9JhTDwJakQBr4kFcLAl6RCGPiSVAgDX5IKYeBLUiEMfEkqhIEvSYUw8CWpEAa+JBXCwJekQhj4klQIA1+SCmHgS1IhDHxJKoSBL0mFMPAlqRAGviQVwsCXpEIY+JJUCANfkgph4EtSIQx8SSqEgS9JhTDwJakQBr4kFcLAl6RCVBL4EXFFRByKiMMRsbPP6++IiAci4usR8YWIeGkV25UkLd/AgR8Ra4CPAFcCFwHXRsRFC1Y7CExl5suB24EPDLpdSdLKVHGEfwlwODMfzswfAbcAW+avkJlfzMz/7T39CnBeBduVJK1AFYE/CTw67/mR3rLFvAX4534vRMT2iJiOiOljx45V0DRJ0pyRdtpGxJuAKWB3v9cz86bMnMrMqYmJiVE2TZI67/kV/IwZ4Px5z8/rLTtJRFwOvAv4jcz8YQXbVQ32HJxh975DPHb8BOvGx9ixeSNbNy11QiepKaoI/HuACyPiAmaD/hrgjfNXiIhNwN8AV2Tm0Qq2qRrsOTjD9Xfcx4mnnwVg5vgJrr/jPgBDX2qBgUs6mfkMcB2wD3gQuC0z74+IGyLi9b3VdgMvBP4pIu6NiL2Dblejt3vfoZ+E/ZwTTz/L7n2HamqRpJWo4gifzLwLuGvBsnfPe3x5FdtRvR47fmJFyyU1i1faatnWjY+taLmkZjHwtWw7Nm9kbO2ak5aNrV3Djs0ba2qRpJWopKSj9lvO6Ju5547SkdrJwNeKRt9s3TTZ2IB3yKi0NEs66sTom7kvrZnjJ0ie+9Lac/CUS0KkYhn46sTomy58aUnDZuCrE6NvuvClJQ2bga9OjL7pwpeWNGwGvti6aZIbr7qYyfExApgcH+PGqy5uVYdnF760pGFzlI6AZo++WQ6HjEqnZ+CrM9r+pSUNm4GvWjl2XhodA1+1cbplabTstFVtHDsvjZaBr9o4dl4aLQNftXHsvDRaBr5q49h5abTstFVtHDsvjZaBr1o1eey8Q0bVNQa+1IdDRtVF1vClPhwyqi4y8KU+HDKqLjLwpT4cMqouMvClPhwyqi6y01bqwyGj6iIDX1pEk4eMSqthSUeSClHkEb4X1KgOfu5Ut+ICfyUX1PgLqqp4IZeaoLiSznIvqJn7BZ05foLkuV/QPQdnRthadYUXcqkJigv85V5Q4y+oquSFXGqC4ko668bHmOnzS7bwgpqu/IJalmqG5X7u6uLnpAyVHOFHxBURcSgiDkfEzj6v/1RE3Np7/e6I2FDFdldjuRfUdOFKS8tSzdHkC7n8nJRj4MCPiDXAR4ArgYuAayPiogWrvQX4fmb+AvCXwPsH3e5qbd00yY1XXczk+BgBTI6PceNVF59yNNPkX9DlsizVHMv93NXBz0lz7Dk4w6W79nPBzju5dNf+yr90qyjpXAIczsyHASLiFmAL8MC8dbYA7+k9vh34cEREZmYF21+x5VxQ04UrLbtSluqKpl7I5eekGUYxkquKwJ8EHp33/Ajwq4utk5nPRMQPgJcA352/UkRsB7YDrF+/voKmDaapv6DL1fS6sZrBz0kzLHWmVVUONWqUTmbelJlTmTk1MTFRd3NarwtlKQ2fn5NmGMWZVhVH+DPA+fOen9db1m+dIxHxfOBngO9VsG0toQtlKQ2fn5NmGMWZVhWBfw9wYURcwGywXwO8ccE6e4FtwH8CbwD211W/L03by1IaDT8n9duxeeNJNXyo/kxr4MDv1eSvA/YBa4CPZ+b9EXEDMJ2Ze4GPAZ+MiMPAk8x+KUiSekZxphVNPdCemprK6enpupshSa0SEQcyc6rfa43qtJUkDY+BL0mFMPAlqRAGviQVwsCXpEIY+JJUiOLmw5fULs7VXx0DX1JjeS/galnSkdRYztVfLY/wpQaxfHEy5+qvlkf4UkN4q8FTdeFWo01i4EsNYfniVM7VXy1LOlJDWL44lXP1V8vA11BYi165ldwAo6T/X+fqr44lHVXOWvTqLLd84f+vVsvAV+WsRa/O1k2T3HjVxUyOjxHA5PgYN1518SlHt/7/arUs6ahy1qJXbznlC/9/tVoGvio3ipsxl6zOWn9JfQddZElHlXMo3XDVVeu376D9DHxVbrm1aK1OXbV++w7az5JOA3XhtNmhdMNVR63fvoP28wi/YTxtVlWqnpbAaQ7az8BvGE+bVZWq+1Lsm2k/SzoN42mzqlL1tAROc9B+Bn7DOKRRVaq6L8W+mXazpNMwnjYP356DM1y6az8X7LyTS3ftt39ExfAIv2E8bR4ub5mnkhn4DeRp8/As1Snu/7m6zpKOimKnuEpm4KsojiVXyQx8FcVOcZVsoBp+RJwF3ApsAB4Brs7M7y9Y5xXAR4EXA88C78vMWwfZrrRaw+gU78JUGCpDZObq/3HEB4AnM3NXROwEzszMdy5Y5xeBzMyHImIdcAD45cw8vtTPnpqayunp6VW3TRqFhaN+YPaMwcniVJeIOJCZU/1eG7SkswW4uff4ZmDrwhUy85uZ+VDv8WPAUWBiwO1KjeBUGGqTQYdlnpOZj/cefwc4Z6mVI+IS4AzgW4u8vh3YDrB+/foBmyYNn6N+TmWJq7lOG/gR8XngZ/u89K75TzIzI2LR+lBEnAt8EtiWmT/ut05m3gTcBLMlndO1TaqbU2GczAvbmu20gZ+Zly/2WkQ8ERHnZubjvUA/ush6LwbuBN6VmV9ZdWulhtmxeWPfGn6po37acGFbyWcgg9bw9wLbeo+3AZ9duEJEnAF8BvhEZt4+4PakRvHuXidreomr9PtNDFrD3wXcFhFvAb4NXA0QEVPAH2TmW3vLXgO8JCLe3Pt3b87MewfcttQIToXxnKaXuNpwBjJMAwV+Zn4P+M0+y6eBt/Yefwr41CDbkdQOTS9xNf0MZNi80lZSZZpe4ip9ag1ny5RUqSaXuJp+BjJsBr6kYpR+vwkDX1JRmnwGMmzW8CWpEAa+JBXCwJekQhj4klQIA1+SCmHgS1IhHJYpqRYlz1pZFwNf0sg5b349LOlIGjlvDVkPA1/SyJU+a2VdDHxJI1f6rJV1sYYvaeSGMWtl1Z3AXexUNvBHqIsfIGk1qp61supO4K52Kkdm1t2GvqampnJ6erruZlRm4QcIZo9omnRzCKmtLt21v++tFSfHx/iPna+t/eeNUkQcyMypfq9Zwx8RRyVIw1N1J3BXO5UN/BHp6gdIaoKqO4G72qls4I9IVz9AUhPs2LyRsbVrTlo2SCdw1T+vKQz8EenqB0hqgqpvnt70m7Gvlp22I+QoHUnDtlSnrcMyR6jke2lKqp8lHUkqhIEvSYUw8CWpEAa+JBXCwJekQhj4klQIA1+SCmHgS1IhBgr8iDgrIj4XEQ/1/j5ziXVfHBFHIuLDg2xTkrQ6gx7h7wS+kJkXAl/oPV/Me4EvD7i9RtpzcIZLd+3ngp13cumu/ew5OFN3kyTpFINOrbAFuKz3+GbgS8A7F64UEb8CnAP8C9B3joe2qvPOOM7NI2klBj3CPyczH+89/g6zoX6SiHge8EHgT073wyJie0RMR8T0sWPHBmzaaNR1Y5O5L5qZ4ydInvui8exC0mJOG/gR8fmI+EafP1vmr5ez0272m3rzbcBdmXnkdNvKzJsycyozpyYmJpa9E3Wq68Ym3kFL0kqdtqSTmZcv9lpEPBER52bm4xFxLnC0z2qvAn49It4GvBA4IyKeysyl6v2tsW58rO+9L4d9YxPvoCVppQYt6ewFtvUebwM+u3CFzPy9zFyfmRuYLet8oithD/Xd2MQ7aElaqUEDfxfwuoh4CLi895yImIqIvxu0cW1Q151xvIOWpJXyjlct5igdSQt5x6uO8g5aklbCqRUkqRAGviQVwsCXpEIY+JJUCDttJWmV2jZSzsCXpFWoc+LE1bKkI0mr0Mb5rAx8SVqFNs5nZUlHjde2OqnKUNfEiYPwCF+N5rz/aqo2zmdl4KvR2lgnVRnqmjhxEJZ01GhtrJOqHG2bz6pzgW+9t1vaWCeVmqpTJR3rvd3Txjqp1FSdCnzrvd3Txjqp1FSdKulY7+2mttVJpabq1BG+93mVpMV1KvCt90rS4jpV0pk77XeUjiSdqlOBD9Z7JWkxnSrpSJIWZ+BLUiEMfEkqhIEvSYUw8CWpEJGZdbehr4g4Bnx7gB9xNvDdippTF/ehGdyHZnAfluelmTnR74XGBv6gImI6M6fqbscg3IdmcB+awX0YnCUdSSqEgS9Jhehy4N9UdwMq4D40g/vQDO7DgDpbw5cknazLR/iSpHkMfEkqROcCPyKuiIhDEXE4InbW3Z7ViIhHIuK+iLg3Iqbrbs9yRcTHI+JoRHxj3rKzIuJzEfFQ7+8z62zj6SyyD++JiJne+3FvRPx2nW1cSkScHxFfjIgHIuL+iHh7b3lr3ocl9qE17wNARPx0RPxXRHyttx9/3lt+QUTc3cuoWyPijJG1qUs1/IhYA3wTeB1wBLgHuDYzH6i1YSsUEY8AU5nZqotMIuI1wFPAJzLzZb1lHwCezMxdvS/gMzPznXW2cymL7MN7gKcy8y/qbNtyRMS5wLmZ+dWIeBFwANgKvJmWvA9L7MPVtOR9AIiIAF6QmU9FxFrg34G3A+8A7sjMWyLir4GvZeZHR9Gmrh3hXwIczsyHM/NHwC3AlprbVIzM/DLw5ILFW4Cbe49vZvYXt7EW2YfWyMzHM/Orvcf/AzwITNKi92GJfWiVnPVU7+na3p8EXgvc3ls+0veia4E/CTw67/kRWvhBYfZD8a8RcSAittfdmAGdk5mP9x5/BzinzsYM4LqI+Hqv5NPYcsh8EbEB2ATcTUvfhwX7AC17HyJiTUTcCxwFPgd8Cziemc/0VhlpRnUt8Lvi1Zn5SuBK4A97ZYbWy9n6YRtriB8Ffh54BfA48MFaW7MMEfFC4NPAH2Xmf89/rS3vQ599aN37kJnPZuYrgPOYrUD8Up3t6VrgzwDnz3t+Xm9Zq2TmTO/vo8BnmP2gtNUTvZrsXG32aM3tWbHMfKL3i/tj4G9p+PvRqxd/Gvj7zLyjt7hV70O/fWjb+zBfZh4Hvgi8ChiPiLnby440o7oW+PcAF/Z6wc8ArgH21tymFYmIF/Q6qoiIFwC/BXxj6X/VaHuBbb3H24DP1tiWVZkLyp7focHvR6+j8GPAg5n5oXkvteZ9WGwf2vQ+AETERESM9x6PMTuY5EFmg/8NvdVG+l50apQOQG+o1l8Ba4CPZ+b76m3RykTEzzF7VA+zN5n/h7bsQ0T8I3AZs1PAPgH8GbAHuA1Yz+x011dnZmM7RRfZh8uYLSMk8Ajw+/Pq4Y0SEa8G/g24D/hxb/GfMlsDb8X7sMQ+XEtL3geAiHg5s52ya5g9uL4tM2/o/Y7fApwFHATelJk/HEmbuhb4kqT+ulbSkSQtwsCXpEIY+JJUCANfkgph4EtSIQx8SSqEgS9Jhfh/LY7vNKsYIxAAAAAASUVORK5CYII=\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "plt.plot(correlation_coef_faces_objects, 'o')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f8d0d695",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 133,
   "id": "98877595",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<matplotlib.image.AxesImage at 0x7f58812be580>"
      ]
     },
     "execution_count": 133,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQEAAAD8CAYAAAB3lxGOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAABzJElEQVR4nO29faxuzVUf9lt7n/u+KQbFNhDLtV9qExkkE7WGWAQpQGlpErCiOlQRtf8AE1AMEpaKRNUYkFoUFImmfIioFe2LsDAR5UMxBCsiDcZqgiLVhI84xmAMNjHCr4wNmAA1FN/z7NU/ZtbMWmvW7D37eZ5zz3Pee9bVufvZs+drf8xav/UxM8TMuKd7uqfHl6bb7sA93dM93S7dM4F7uqfHnO6ZwD3d02NO90zgnu7pMad7JnBP9/SY0z0TuKd7eszpxpgAEX0JEb2XiN5HRG+8qXbu6Z7u6TSim4gTIKIZwK8D+GsAPgjg5wG8lpl/9eyN3dM93dNJdFNI4HMBvI+Zf5OZPw7gRwC8+obauqd7uqcT6OqG6n0RgN9W5x8E8Fe6nfhzz+Enn/P8ck7yg/WRQXK+5HzM6Zq6zgSAKFVClM8BzmkslZdGOuc9gNRLD+rbg7Fore5OgSa774PPG9w7r5S5EdL1ngpCe3309Z7YDq2V31t3zk9B2mpeNRbKOecxkf9oSZnosKS0w3Uqcn0AAPwx/uD3mPlTfTM3xQQ2iYheD+D1APDEc56Hz3rVN5SHTTLIDylhuk4DfnqYBv308QW0ANPDBXRYMD1cgGUBHRh8NYEnwvLEDH4w4fDkDJ6Bw5MTmIDDE+nxLw/ycZYOuQ76vpRzNtelLFOqgKd8PqEwIMN8dDH9At1Rt+kZF/s6M57jyV+n2pcp5VvmdJT+SX9LfR0mWfvA9jzIu0oRE3D32zws32b0PEz5fF6+IzLnnkbfjanTtdVWavOVtnV5tu2kdC7ptOQ8+Tgd0vc3Xae0+eML6ADMf5a+/auPPQQWxvyHfwowAx/9DwCAw+/9PgDgZ/if/FbU1ZtiAs8AeEqdvzinFWLmpwE8DQDP+eSnuPdQQy48UbrJCcCSpD1NExhLQgETpSO2P9aCHnok18qAzB+U6qik6cEUMgA/sHIaLSmPPjZ9V+cy2NEMerlO5XrTDzdwfN2eVp+NvqdOvVtliXNZVq+e2Lz3rcHv82nmWervXA/vJX8T5VTeCatnLwO3c7+lDRn80vZU75WiKtx9y/epUS4TZ+aeamACMBN4nlLGqzmhhAcP0vHJJ1OF/1/c15uyCfw8gJcR0UuJ6AkArwHw1s1S3Pm9RdOeL++G6FF0QUvqHW2PDvhbJ6emFGZ6ZgrrHWnnlDKBMGJ33EWmPorT8zXKfz26ESTAzNdE9AYA/wLADOBNzPwrvfwEC9XIQaZSLxEIXCTdwhOIOJkAZgDLhGILmCnlU1DddhKVOxspZI8lXUuA1BnVL5W/I30N1NZ9iNrsva/JXi/wX5hggwhU2mT/Sj7X36b9LSg+uXPf5+heIga/Ba8j2nqekH4L1qZ1/d7Vy7pPGhGq76Wpz2mL3o4lyIC0dDd1UDpfOCGFKSPELOR5AnhO9S0z0gC/SnmWJyaAgeXPpWE9ffw/SjUuudE/jW/3xmwCzPxTAH5qf8HBbJQZYB70YK4MoCcxz0jRQA0l7po0az4AlQ6EH3VzPvB7j6Q5m+Rdq0fDbjnV2HjrGxhEPtGALyrCCK29H6dSkH9XA20YdcW3FbQd9j1EGjIeKJ+uP7BbMwwaKsaPeocGBYg0v2IwEyhzx8OUODs94GRE1KjhirLhS9CAam/gQ28k38ZL1UY6L/25eCs6ZcVINKVGugYsJ/kbKazOTR+cEdAggNLfjsSHPW+MkU3bXPKvMRRtA2JVUThAO9LWda3ps+5b+p7yPe5AG0W37/XPSf7GqCuSP9sCMGeJno1/5fpSz4lRbV0i3DKzSO+QLHJigJjU7wcFeQDA9CAP8w/F93gZTACI34zjhqIOlN/E1fVFwRgjO1hOkXJr0sX099i6VqSL7nek2ngG1zIh17feQPfX1e/GQ9Ep2stfO1uva6OgYGN9L13p6s57gMk0G30fu6R1/u7gmIGuVBsh5TK5a87QR+o5seTXdav8/b7BuICZKCnh02QQQY8uhgn0brLcYM7DoMJNwQRiTi4ghnXfSdk5Sc7CQUclXe966Vybrxl8HoU46Wj0xvIF1Avs2qhIIKd3XIMNA5A85I/ctwf0Br2X/Bm9NH1TiCCkEAHYUe3lgvEgqQdJtliXWcBfH0UEOp+giU6exs0pz0VJfABGx5d0jQTogPxNU7UJLMlrskxIkp7SNWEWVF6C7dr0YMYaXQwT0NRabglgrhIy56FFmAKDDmnQkbwkbSzbqn+NRqSl1GkGHzX5t1yRhinoNnoDM2BAOt0MaI0GBiT96H2H6dmFtZq/kJWwYZFosCrfblcv99XIQO2gk24PNTrp9c0jAHVf2k1phIacKmlO6ljyO7SAjCC0OkfIDIVTWnJn5ucz3xEkYEj7+MvgsTfigy3EQupHGs8pSR6EVw3CAaOOXWSg2zCSnmJprF+mL+8lU8RggFbyd45GWrv2eWJ33rnPgNGkPrBJ59mmV1vBCiPg9ndjI9D5CjLIqEH0XQ8VeoPZS2f/vEcRwRr16uSssrJIfoV8GMY2IMiAGFhEui9QQUOk8nIJlzEShAF5CSIUJTCuRxfFBLq+2540FxjNBCxcOKAOAEofvNU1+QS1YM3Sv8oAVspvCqZBhtW04RlAcL6JMpye1rZtYT/r8x1oglHLUfchd0S5MIlOMXIZi17faaVLHLwbaSPukmkjoVfVBxI0WyU7HaqEL1DfIYGEFgg8cZb4aI/IAhCEqWNoFroYJiCDFbCSzcLc/EMYAKDCLElJCFWveiAAsAgiMCgDjbV7BAkYyK+lrzqGAy7X2xj+vFSEve7vpecdaEOBq/Q315r+8eZ9Nzp/sTE4G4C3CQyggQLvvcWvPBd5d/56PJy7toIcc2+AxClW46CvPTtEtQFwORdvgDYepkwocQJa95dnuRQvQS0Q2tbujDrQSGst+erg1x+nGApJPhvRiXQ9k6pDS0Q3gGo/avv2fEPMUCfNMYBGjwcaXbaHBBD1uSfdBxlAY+AbRQaF4QwOfv91EtAOPMcVG+marjd+72a0q2q0AdG3RLpbp+kEPXTRs0OUwa/6IoOc8nn5lPV7Ukym2JG1kdHYAqQP6/d2MUzADJSOP7w8CCmDygi0fcCQG/R6IJR2sXYefJD+haoyPbjtkYDm+GYsaCbm+7JmC+gM/KZP0s/sHYjUgoIKNDV9sczAM4cx42As8cOjWL/QIoFGfWB3ItkdcmjRQK+finr3wr17oU66OtYPGfUlIXkAljSYDcrN344kTUR5Kg07+5IdPz26CCZgJDP60iiG5Cjcs9gJ9PURt5qm3uDvDXxTBnbgwaX7eqIPqneP0bG5Jzbp+noP+kfIwfSjYYruuu93ZBPYDNHrIAKdLoNEMYOS2yMBeXX+5ZbvIz8nkEMDO7rYobbnqi1XjZH0ECHGtV/5vYmLEDkPZ9WgGBfl/XmbQOYSy0bnL4IJALADp/fR95gBq4eok0N04dsIPpSgjU1DYYAGzDV/D1vkmYju+9rg70j+ocEfMKtm0BsmpqR9BxlUV9fKSOtI6la6UkorVXXenWR35UkYSKmP43Yj6iEjn7yQq1OKd9pSEYUSOZpsFlQi4QtQEMM3alHjVZnTC5f7lrCZXgSq0MUwAYsEOlK4xwTkmyn/qTTzoW9L+NqHoJ6gTX0eqgXBtbCdFeqimHNJfsMsVwY90CKF0cG/dp9ZyqdouSTiiuvLkIZ8aJlEyRa/Y80UGoag+2rSfF8751JUnodSOXRXvUGbc+i7BPbVCUMMKtPkk1Qv3RVUIPW6NhbO8TJzebSrdBlMQA/Ocp5+agNhMyBXPqymjAseGqkjzLc2iNek/ygSCBDAcHzAsYOflMT3+uOWoc8Pfs9EAFBPigKGabO4TApDyFlGEIKmiDk4NYJldBCq2hBoIb7P3EE0TR3aFajKmzkFBNDCuWtZ8k+621zT5bYYyhiQzwsDym1Mud0co7ARNXwhTAAIP/5owGwOqHJNPfw1RhK0v5a+Wy3wv/fUXRiYP9aBxoR4cZEtnd/XpQd/z6gXpXcGP3UQQPNBUh2zpAYmKwMP5UrYj9Iihd2gL+lqYBqR6ARCD1G4fobnpajta516zi5fRggqwrfMI0BFBCB53xkR+BgYYQaKufAMaJtAXWdjHQtcDBOIDG3mtxtIjbUdbuD7MuTKbElk3681BODa9P3rGx8H6/DS13wkVfr34vlXpb9/jjtdfqTrRTz4Q0mkJCqpzHUcc5WiUG0JWoBCCA1TcLVppuAZgkYIg9+EvQ975MUxg4YsQqhhwul+i+tfmAIhvRMmu/KUupXyfiVdIQL9GHp0NBMgoqcA/CCAF+Rmnmbm7yGibwXwdwH8bs76zXltgY0K6889ELyn428N/t3qQNDPLUm+Ofg3+uQDc5pgIck/qY9F8vmBL/VGgz8y8K0NenVuBn808B18jh63hth1oKOVokpdMG14tUEPeqg8YZCRZghB5zY779qSdxQZJXX+Rd1EGdCZESypHqsGyIk8G/uIwApduLiBrZW3TkEC1wC+kZl/iYg+CcAvEtHb8rXvZubv2FNZF/oLBQNnS/KXOiKp3BuontaYQKePpw5+P/AKzPfBQoVZ2Hyrkh8wz6PnFdDXi7QP7slL/j2DP7rGUpaprI1RPnp5Hk1tsfRlPaqLWG3L9ZHEQOd9Xb6NMvZdH9W715GjlK95Q6G0IAip3I5mCKIy5PdPB9h326GjmQAzfwh5mQJm/mMieg/SUuP7aauj/sPsXGsgeHC+hTI8bdkOukykN8Cjay5mwVvow4VFAfDMzXWNCJrJPH7gSxuGWYzp+KODvTEKlgsqXT3EJN3SyGBpJ48OYzsAmjHcTD3Wedzv1SChLUQQ5ZV7WFynmuzyfClLac5Cvj0vfcy6fv3LeWS5NAEzohq4eIEtF+FGLNEYEdFLAHw2gJ/LSW8goncR0ZuI6HmnVT6QFg1M6p+XMi5P9Af311xf6XPIcKK6SzkGvLTWbUMkZee6G9BMHDMA8wzsdSI9wJHXcKx5yvXc16YbOX8p5+9N32N036iDnNx10zf9HFS5pm3TOW7qIpcO4sREJ0bvOcd/vj13nz4/7NEadR2qU+XZtWm+Q/9sMq1+qziDYZCIPhHAWwB8AzP/ERF9L4BvQ+r7twH4TgBfHZQr+w48+MTnbVj6a1LPgNhIethz86CCB7epFgRtalpTXbbVABXmixXJHxn+CNbCTx3JL+3qgY963hj4ZKkzuS7ZowEc0JZbStcjU4S1wY9EJQiuN++g8/LKnP6oi3opO92GzdRHBTl/qWYhNAZHnaHUk8vJ85VRTs5ViBwrwTWOoHZW1acCi7xhsPetejqJCRDRAyQG8EPM/OOpT/xhdf37APyzqKzed+ATPvWp9lE7Lt+U3/rKfF2d32cd/DpfjwE09XKfSQR5u3VGEsb3S0ss1HOt8xcp7BhIlawO/g8+v65aoK41A7HYBjrXdb6Icv5m8k6GzTUh7h9rz4HKq/tW++Cu7yF5N05Dyuyi2ABK/cE3RujUMdCfU7wDBOD7AbyHmb9Lpb8w2wsA4MsAvHuswvb8JGm9IX2bSRW9NrqDN04ekfrlXOVp7BlAGxbspxArBNDV+/XAV+fk8lE5wkr+PBm92GA9k9hJ3cGmrhXhqb5iVgO1v96AbyweAREziXISuPkgbOQf59U/agXlyWkEYOrQIh1lTQAqXgK20p+RvAYdVED5PplqHR4h32Sw0F8F8BUAfpmI3pnTvhnAa4noFfluPwDga3fXvNZp2okCBts62+DXedYYgMo77DXo9KeN7w9gc4SsvFqgyvrB2hv8PQnPSoJvkZf0dcXsml48BaqP41Kh3+fSpu67yWzbMv3QBddulZT47uXTUtyjDHXdSHdCjSlQ10YRgNAp3oF/jfjz3L/XAGAHg0oD7GDwkYDm+kAbvsebA9D1JawzrK8D3dcQTmdOQBjdR2i8CBUZBDYAVClfJH/Oo6U/GcNZRQyTQwTbdAwuZjPAZIBWZHCONoJWI2Tgqy59UQE9XDmCle8AL75Oed6ea2QEsGTQXyz7ASLIqEFiC0r4MNVkYTdMqPECN4gEzkqbAzmStL3roxTUeQoi8AygyXtkv3uMag9110RRPDX9aJFAJNHXEMAp1EjawWtbdQqFK9sHNoehtkZGWFMGXd7FxH1VR5XbI+kjs4any2ACTkK3ktJ9qR24HLoGe+mk0gPpvIoy3BtYUwWifmoYZ9ruzgrcofur3z29H4ilPwBMU3wsrrfgcRjag0MdNcJXSd90tOlN00e2XetrmUFlBHnjm4xWZLAu2rakeEKJ3vOIQGkGqkn73ciA97aAMqBrSDWRKxsdNwIBzhIncKdpr+Da+aF1GcCuNnO5Ed2/KTveGpE92mvngd6r7Y/mO3NfevaP9HtHu6eBIADqHXevn96Gp8tAAoil6db0301jnJb2Oc2jg0YfdwNsUz3YkPiAGvSaESjJ3bMJdGf6kTt3tgAd7Wes/rlskf4qb5X8iz0neyR37NGWWrDmJfDniyABk95vfw+T0CjAIoDWeJh+278C3z2ac1uSVwjmrHr6vPYENgS6Ti4yt00oUwrkOyKob7yzLJ+ny0MCN8DpgJvhoGet/4b7F7d5c9K9iRh01+4SjcQ4HFfx8UXPSReDBKxEDRDAit5e8vgyck42LwjNyr2Ve3Ygtlftdkj9eg+17tAe0UMAHv5vIIB6rOW87q+t/zXUttX954wMZmUbACoy6NGiJGyPojoWI3UFCdjzU42Phohrm8QObdTfRNVzQQQsiz5yMQ74b5c8MpA5A5G3QFnxGjSgbQmkEtT3U6Yj9xad6dDlIYE7QDeNKh4FjUiwrYF+E3QbbUZ019DKKXQ5SAAdBJDPwwi7KC/ifI2e1OhNTgoP2gK6+j7QSn7Jp20Cus2NufwNAsh19BBAnfxTPQVr0h8A5uIlsAhgynmKbQDrtOldGyi7OMm/uJdyLCJYXOcmVZduq7gOiduAJV9ndtqTl6suvywrlgxUqO9S5h4sARrItgM9hVjsAPUG6jcl48ibI3p0jwSerbTDt1+ur13bKRm9BnbX6FIQCYAbf5AXhQTKsszOR9WLB9j07ffyKJtAa4l3+aUPTWejPnHYh16e3bv4eASg6iPiLgLY0v0njQQmOS7mKF24KpGDY4PEBuDsL7M4FKBr8MhgrR5NsoeqLc/F61AW/WGqyEBylXvoyc8l1za5Pqh3x+lPYgAKImDKR8mo0MAEYHFLkEkZYDVeYAswPX5I4FGKp1XRekq9djCdS39dq2dSqsDeOtc8BVv9aFyUO9teo5H7OZttIFBXyQ/aW6LLQQLc/i7Pn9Ho/HttBMYWQE76+uuqHl2H6a6W2j2dX12315yOH+XTD6CzrPeWDWCaeFP6Jz0fRd/3toErhwjKoDxD3H64poAi2TmnQQMBUjDldJpuI+jDHNRbNj4VdZ1ZpREWpmIz6clRzsv5SMRg6ZNaKgyor1qWCC82gUVZ/2VeAeWSMneA63lZpVhVWr0GYRcL3X0kEHDY7vWt8r3rGwygm1dLkeZaJ9/e/kVFTpQsXvqei7qrDqlreynqYw+1BK+y6YOus9eftefSrH6k2pbra3VvfguETXi/ly4DCTDq1stAYcFGn+SAkxtdO/YQNP547x3o6FGtbu/0dF03VP1rkj9iEqYOl0/59AHUeICCCFDO1xDANC2b0n9SCEEjAkECE6x3QGiUUYzkW5yE97p71c+tdJ1rFaYOSfcow6MHfSbvSkv+snIPEipg1Tc4RFAjDSdT37Jky/4yZS9DkvwaEaTVgbKInyihAaa88jCXLc7EU1DAgftWPQLYYhqXwQQ8ZSR01ir94IVtw3+iWw8uVE9g0zZRQlTG9SskxzT6c/1XJE7JY3XtHgrw9RzLDNZI6liYMBFvGv50fp3WDHKyIcG+nC5TULZrZ4FSF1R9kr9dE6EVZJ7EsNtfMSnozA3QxTABLelF9TGGVULIHHqeAo0ATHoTh2/z+bX+W0QQtaMGdG+FX6h8XvJv7OPXrPzr4vp1/D8Rm3kAGgHME29Kf/ktOn9jC1DX0vn6UrZ7mEON3AMWntJRPUBvGyhIQN6FKg+0u/E2zEEzBodCyqenkIGgAqldp5enUPYdyG1QjTEAgIWWLPFrhGGK9FNjgKnaBKZqJyirEDFBphXK2oIaEdRv1z6PHp1jodEPAPhjAAcA18z8SiJ6PoAfBfASpNWFvpyZ/+CkhnZwRAPTEQxgTScgjsIAXF2smUK55u0HQR59Lejb1tz/3hoAkb7dmxjUO/cGQT/4twb72nUtkeV8ogULT5jA3a21vUT30lf6KuUjBCDnuqzu68JUhRNx9tRR2c/jwLld1wehGnJc70EjgG4AkkYBqv7mmrRDud6cVRfZ+sTPhQT+C2b+PXX+RgBvZ+ZvJ6I35vO/t1qDGhMMJH2HU/STfwZNUTXIPQKo3gB3LkfUsumYP4beRh86n0MaQ6v8Buejkr9k8zP9gpmABBv37xHA3JH++hwArkiQQIsI9DGiYQ9CV+LbwVgkfH453jbgy5fq3fmk2wJZ5uBsAlP2BmhkUKQ/E+ap1gRUBnSQttx1gQqFeSyT+/DTkReFAspFO6rLI8kIocw0JFFRcr4N8/9NqQOvBvBF+febAfxLbDGBFTrWGuoRQeiG82102lozEIYMQF0rA9610dvSqxRtzi3TaBf/rMxCS/SeCgCgywDq9bHB3xvwowZBU56C60pvLyik7K6x2USpB7CIQaOFyCYh0l/okK/JscwY9u+qiOFY4g+vkkRq8OefTOIyjCYdO9VggM7BBBjAT1N6sv9HXkr8BWrF4d9B2q/QkN93YFeDTpqnCgNPgJPKPn85Kqnc2BYiG4FBGgPS37SlVvxx1n7PHJrBPTj3f54W4wGYp6XR/wUlXNHSDP4JXAbaVSc+wDMJTxJnMEKHRpI7SU/+ukUKDRJwnm8p770PWpUz9gHX7qJtAbKU0GRtAtLkIT8Oeb6HZQJlZpGqE8SQvAQLFhBTqpYJkJWL4LwFedCL+GcwKON/JnI2gXQo3+7GqzgHE/h8Zn6GiP4CgLcR0a/pi8zMFJioV/cdKAOMbNoJiCDyDojaEVJPSuvB3yvvGYCqK1rjP0IGpK6Tdw02iKDV57ULsGcArHnr3xUdSl0GEXQGf2+wj6oCC8jUccj2AKlF6rIBQNu1GtqLGKT1opOrqsgyHkEDZbwJ43DPq9oVXGAPoAZ3vsA6rbSMovQ3kFHBf1XVKJ3MBJj5mXz8CBH9BIDPBfBh2X+AiF4I4CObFbn7CqU8sK0ahIigSmNjC9D1dnb9KX3QVn9J9y9yZPCTHfyGKUj2juRfi/5L+aoNIIL/ggg0/L+StCz9teRPafGg90xBaMtboEkMf/XcGeXy74MyxEk5YBsp1HM7cBeebDtojYH6SEzVjuD06+tlwkxpu7dkI8j3X6z/1sYg7w9YkjoyVWNk2exkYvBCoInzOgTC7XOjwgf8N6p+s/nO1gfNqTsQPQfAlDckfQ6Avw7g7wN4K4DXAfj2fPzJkfrCge4ZgPvzedtOOl3TPzh3vaf7t+v7Bfk8A3CSvzAAeafe4Lch+b0a4Kf99gKAriYH+cHG9TeBcTVVBAC0BsEHjW3ADvY98L+WORhVIMXHqFHGkl71duRf+Ur+v5XONr+liQ42tgC23STdrR2itpjrduhr4YRoxCDo0VqECGAgffoO0vhOorxOFlLqgFMLNLHKYoDYhuA8FQm8AMBPpBvBFYD/k5n/LyL6eQA/RkRfA+C3AHz5VkU9fT1M75XXFDEPrBx76/d1ywVMoccA/OCX61KUuOaXc7RW/9HY/zX//0wKDWT439oDEiqYiTfVgJ7LcI38gAPqgJ2zOqKlv+QXtaCUUUgh1dXm13VrHb91Fx7sudRDKMwgXcv36S3uIvnzqQgNUQ8iRACQOmY9nynbmfLKxhNAS9qQ3KsDYiDU/KD8Vt//Bg84jQkw828C+M+C9N8H8MXDFTmpXh9cvVbOYfOW8oAtA1vG2AGi9M5gXw36KX1vzyMGsHfwN0ggH/2SX37a76zyF8jvrP9XSrLrc0EED9x5b9B7dWD2+nimA/TAtwMu1RtL49S2ZQxdphDkr7XH+ddiBwQxaGZwLYOdnc7v6unZb1pEoI9WyqfhrjYqNd9mZBvgo1xpFxMx2EhrQjuzL18bsQ+ETMIPXJPWgf+e40dz/1Xfq4+/zwB6sN8P/ub8SOkfuf+mjAiMDUBJf30OwBgMgXawb7kCpwKU20g/YRCRNE7n1rC3xhRM+QAxREzE5A3kpmYGV9OSyuTjVbLvN+pBeRpT0v1DREBJHahRhZziB1DVAi73LYKGzHecvASwrkLSHdjmCxfDBNLgzg9qDYr7NKxcM/A8+Ou1EdW/MfhHpH80+HV8f2/w95b88pLfT/sV6e4NgmIA1PD/wXQIVQEt8WcsSi0YQwCeDnBGOabCIEaZQxnEbpCXNjoux+r6s0zB5qlowdsFJjrgepkTIsj3cb1MmMFd9QBAFTBB31m922ooTB7INKcuMYtiH2AYtNA4YShACLYLDV0ME2CZIy3kIHjXNkA9qb8SF6Dq9GrA5gYf+lwhiiEGEEBEHdLbG/wVCSAf81wANSCHpD8qAmgMgooZAFbyR4NfBn3DDJxt4ODC1SZYo1xdEhlmwK3n7bgAVT0pF7n8Ai1Ve0qF6KkP+pspTBEWQWypB7U8zPX6LaQRLS5EUGAfEHXBoYEt2gBpF8IECEhbbKXTZjHQPOBW1QCy+ZoycHV2Jgo1BsIdgx/QUh6VAbignmipr5TeDn6B/oDV/QknDH5KNoCJFqP7z1TjBB7kY0EXbtDPZTCsM4EHdGgYgXbpTS40eFbv1qMGyesh+6HzlVe1IrsUFQJI1yejQghTsDYFN3/B8yGHABZZRMQzzak+lxSJmH7PVCMTgRyhOOV6lMRPakE1BBqbgJyXdcf20WUwAcTW/XKMJH3+PeQ9MHWxTfcIYK2sOjbx/qp8qAKocpoB6LKlykZKcJPvFAYgaXNJs7YAoC/x/eDvMQNNEx3MwJ2hEIJhGn6lXifxyWPuTr4mfy/MOKWbuAGWKxLEVEe7NiqWo4v99d4UjQgk50R1ReBFzqXLBDUbUpjACvw/A10MEzCwfnJpa2oA2d88ZTVAkMUU19m3O7DN35nMsxb4o+H/1kKfQAv7vc6v802kQn6LTcCeax9/JP31gBdbQPUKHIwKIHULMvCDX2jERait/xohCIN4UCSwHaxlFiDbd6GnHgPWA+HzJ1h/wCEP5nQvLUJobQRVsh/EU5Au2HvzEkhihsiqDRJuXPqQbQHaUJhsP1NCA9NSJxmRqLiqrQF1YIsuhwkEFMH+rqVz5WFoVcDaD7hlAj0yCILhGdJeBuCb1EzBR1lHxriS1vjx5dhKfwCN9b+gAifxff1CvcE/b4ioA8gwioWnWpdiDkkC57h7Z/VHw2jGkIOeEDRj2UQIErosCKEaLBMyiKY4+/dQZhE6RFBjGiQfme9BPAVwv40twCOEE+kimADD2nZaY12bbqS9SHbifEQ9KoRQ9XkUCd+oAR4BOB1/VfcflP5yG70tvvxCHoIUHsxitHNegIIAqh4/ucHuB/+DYhOoZWYsxTCoJf+c8wJ1sI8OfqEH6vcBSSoDiRkUBKAGlUn3NoVB5PAA9roMZkEDkk9sCmsIQSMDQQXpfLYooEQNkznHVKMK0/mSw4zzcmXiSgTy9OMFyzJhmjhtbLJMWSOoS4sVin7Ldz7AJy6CCRgakPRGRYBL31O/r6dnF3DXjKRu9PagqDCOQKLrurylnTrpPn8fDcTSfyY2UlngfzlHrXceHPyjEYMLT6WsRge9dE8Hbcwrlv0YOfTChlN/Vf95KUbIaEETbRtYeMYENgxL21J8/cV9yWILsLEJB1SBASB5BHIdBglA7AX1OEQDY+IymIDW66F+CwKIbARO2oukbxEAHEJwOn8ZaRweo22+dbq87Giab0/3j2L9gf5GH5Je3HdO97+aVOjvgPTXOn+xAWTVQKTrg+k6HfN5ywRiF6GQjxso+jq1QUMHTBYZlDJkymh0YK6X+ixiKAggjzBtgzjwpJDAlIJ+BtBBOXAezN5bMF/nxq9M/jKYpzTQJY5gmWRq8YxFM5MJebNTKmiTgcQB5DuUMGIVYUvcRiNu+Qg75tYLp0i3z+nmGF1T1PUIRE0a6e2qbNBAW2/pWgcFeEQgln9t7Y9IBjWgEUG12GuGYMvZOken/s5YwsAgSR+5rvsg1/T91DJsEMek1JJTaVbPTdN2HIR9TzNx82yjvvYQ36S+mSn4Rqvheez9RCi5sYU5ugwkAGcTmFyaRgQdBNCmoyIAXVc5l3JsbASNzr+xzfeI/m8HdKv766Afne6t/0/MNpBHIwIb6FORg3YRivQXBAAkSS8oYFY2gmITyEZDPziqa3DfbMIDk7EPLPnBar3/4FyBPuDmUAx+TvI3U4pz3WLh59rWgryqEFVkUL0ICZ0IOpB0sSVcEXDNedHxDQSwiLFSupqBTLUZZP9DtgksrJBCRgPTxGXJ8jLNWL79hcpEIkyo4QNKZdjSCC4KCWxxrOZu1Afng4LCchoVRKhB8qx8yF76H0tbev6e9FiibUtMben3Vv+SPhgOPEo9JtFr/65Rg7A66KX3Pm+DLgsJOBuA1eth9PrQNgCo+AAfL8ClbEEAQP0tKqtiDkRsNvgAMLzIp0h/Kdub8AOsx/zr609kPd0igKWZ8Rfp/t737yV+sg0smJ3LsF5Pbc8OETTrCgyoFVpiV2mtvQFOojtkIKihhxi8/aG0QZTdftUYKaigxC1kZOCjE8VucL04udmJIFyUDSCd5zaV16DEEGTJL0bD1PRS0EAOKQJzSqNJ2QcmBiZKYcsTACbwnA0DnAfFhqi/KCRwMm3hnrBM/NFGev0x1NP1hC5BIvRQw6Ps27kRxx6K7CFbyKQXR+Gvj6aPXt9NA2PiaCRARJ+JtLeA0KcD+B8BPBfA3wXwuzn9m5n5p9YrA3huVQFRu3iGRQAqPsB4AsSKOqlrIvmnbAgMIghBygvgbQMrCGBU/9fSH1DSdDDyTyT8E8U7oCW+nfSzJv2Lz1/5/iNEAABPkPcOWGTQtwlsD2at/2ubQPHrd3R7IEYMZWFRsvULIlgEtWQvxMITDiAs2RtyABXPg/YgyLlGBvOU3Ymc3IcH6ngJig0gDbFlOpTrggAolzPLmZltzSwaYJ7yxOVc+cx1aXJGmn7JXDZBHQ0xPpoJMPN7AbwCAIhoBvAMgJ8A8HcAfDczf8exdQPo6+yj5c5AG0uz3dMZaaalCQq6KzRpv9wdpHPZBL4YwPuZ+bfoyJETxQVUJMDlvCABwCGBPgLQdUTxAKS8A9orQOgjgGiZ73TUdoDjFvyIrP8A8GS2QHvr/1rcfyT9q95f9X8pl/Iml2JKz/aIEkGY8pS4gZ1I4OB8/SLFDyA8cJK8XFeRgQ9wKNZ+yb84yS99Ei/EQpMLMlrwAEnPT0FBVBCCthekunIZyrEFRHiAAx4uM0DAQ/lIRaI7RHCY9L1qiZ+PC1L7On6ggwaY87fK6Vs/5G+R9WpHXNuuAQNYtbifi/W+BsAPq/M3ENG7iOhNRPS8M7XxrKc1ffASbAfAs8eK/9jRyvdzjr0InwDwXwP4ppz0vQC+DYkPfRuA7wTw1UG5svnI1Z9/XpH6gPcGsLUNoJ0P0NoHsu4veYDWG5CPbTxAtfKn4zYCOGa5LykLoKwBeNWJCHyyeAXa9f9m1GXCvc//FOkvkl68AhoJAJUZ+EhCoV7EoEEBPEEc5yLdNVJIKKFe90ihoojc14wSWoSQdX8mLJgUYkhx+WWuADghhA4yWFtXwK+FEHkJFp5quQMy8r0qiEB7Cwhia8qbl0iE4UIJETPlPyRkwACWhAT4KqGK0dDicyCBLwXwS8z8YQBg5g8z84GZFwDfh7QPQUPM/DQzv5KZXzl/wnP2tXgOXX2nZI28BadI52gewV7asqjfRandj1cYe06j+WyZsed06vO8NS+MjosJ6Bw2gddCqQKy6Ug+/TIA7x6qhZTakq3/xRbQxA1sIAC4WYOo+cysQAQIgKrkD49KshNxd72/CAGsWf+TLaD19wPaFtCu+hPN/Gt9/uvSP5WxEl/OxWLv1xUokYODE4mkHkBZ+0np96hoodZpUcKUy0mfD8VjkXPLdYcQCnrBhAPYnIPqpCTjRYBFBkuPuUypvLxTz08OOi4AVN6xxAvo+AEBwwU9FPtAsg1MTKA8JpZlAucow0O2X/FS4wPS8uWpGt6QmufYfOSvAfhalfwPiegVSN35gLt2szTqUSj5xjhwOBdgQ3/XwULruv55pfXwTsCKegN6V7s77kNm6UmbfiKQvh6WzyBezzocJVlPwAckpXbddmdnpvXVl/IMRrdOgc8T9duuOxAU3PjOT9134GMAPtmlfcVRdZmIwaq/61DiaB5AQQA6FiBfS3WwQQDtLMF8KgN2traAWc5Fogcr/p7L+l/X+avW/3Q9HZ90M/s0ApjAzcy/B3QIpT+gJb6PCMzIwXkByvXOlOK9DESvCzgVNHAIUYJI5mIryLaELYQwoUUGB1C6t4wKUr5F5REPxGSQQYQEBEFMys4h391hkT7XuQMLT+WdFWYzXzc2ASy1Ho8GsEzgiUG0gDnZCCgZCVLcAAPIEYNiQ9vy2N09x6w28JW04Dwse3yzazPOzlGHzEjrletGoIFDCbM2KKvK0krvMqjNegNxvrU2Jsf41vrnZwq2eeOZicdQr8/e1Zn6sv5+Z1pW51y0ezPoZ9qv24abr88iLYvakDoH6pgY+OYvY+6A1uvRmUVorPqwsQD+HD5vtRU03gCy5xECSOnHIwC98o9FBF7i97wB7pjjA6K5/3us/zW9lfglchB1NmE6t89FqLENqHO/8zCQFw7RjEDBXEEJk/qC06IjElHoJb1DAAPIoLENAJ00ay9o7oEniwSkv3k0yjuUVYjlHR8or2eoEICOH2AmhQwSGpAFT4C8BNqUPAC85N0K52QjECQgXdaet4guBglUWO84XiThPXejlbUBdLrLMxrX5D94zZn1fPByzakAgB0UfpaZXN+aL+9djJqsZF3KsRf8M7tj6kPfNtCT/M2c/wCZSNrkpP/ceSZRnnPbTkzAk5lNGfWj77HoIYFmNqG//w2UseWNqi5EJ8w0Ur5TSABAWUkVMIOdEXgHfCyAl/o9BEA8FBEItHEAPQQQxf8bKKzm83sbQBvx570DHVvABgLQen4k/eUaYK3/uo6KDOrKQglZWKbmP+aIUWjDXZHaZcUevQGIRQBlgc+sy8t+AHJ9zo7wY5DBIccA9FCAthcsHVmZ0EyWzsU5YPte7BhZ4hSbwCEvX67iB4ptAFMxAbS2AZQ1B2TG4ZQRAM0MMIHmJXkIpOyG1no5TEBRuDbAGueMOJ4wg/Lb2hLKpaJLOU4KNOcRAtC/12aU6Txa+gtpPX1z6a6OUc4s/rGGKJzE11IxmiIsDGCNVm0Q6trBDfgDV7WgMAMx4OU8aZXg1otwCslcheJpoAXIE4tSHxYThuyXM5d+LmjXG4yoPD+u53s8EeIZkMC0Q+9xEwOg/M2veAwUXQwT0D7/xrcvA7p4BTiwCQQIQAwmggBI2wRiBNCs+uP3AIC1AUQzACME4Nf6S3nj+f86AjA6ilT3lv0tBKD1/y1bgEBx+XgflEhBy3j80JjdB+c/1jrgJT+rgcddhKBtCGI/8LaDCBmkpc2TJ2EeRAatF2ECcA1PyV6Q5/RJhOBiJb6OKASSXUgiEatNgEscQUIEXFFAPl4vk9mfYp6Aw5IWLjW2AabyjTfIukMXwwRCC39wE5srDxVmYDcIBSXG2EMAuoooPbIBeARgkcJiziVNBxN5K73XPb3e7hFA1L/ZtKFUFDfoI+u/RhY919/o4O+lC1PQUbfa399DCMciAYk50OUbFAAGVFqKvPGooLWuzbl8hAQau4hCAonZUOjzb/vPYE7fkUQaT8SJN5DewgyQpe8q3LXot0eXwQScd6DYAkQt8LYAjxqU5C8IoJH8GzYAt7qP3/9PunYuBLC275/f7aeHCCIEAGAYAUQrCGnr/6yMWU8U6ZqfS34guy3L/oPk+EQjhIbnUZM9p4s53AX2u756dJAiDWsaMqKeUWMLngAKIrDzD5LFQOIbFokIREUEegbjg7wL0sTp+1zyN6O9BWnH4wVXSL8lz5x3IyLi9JmXY3oYaSvCtBqWLE0ObAhOXAoTgJtKrC80uj2sMRDoIACxnqos1G4B5ncD8umnIgBhALNK29r3L7LcS932yC7/OgLwDCC12Up8bQA0q+uiP/g3vFAAUhCwLreo+g5s0YHpU3fQ99JjZlC3OrfoINkDYFCBnEs/EmJJiGBSMQALKO9ZIEwyqzMq4nGmpagD10jblSxppdDaF1KqUP5WFnVf/ltb4L/VuqlpSstjZABtXAwTANDCfy31Jd0zAG0XmCwCMFt+5X0AtmwAxyAAQLv4agyARgCaGVwVvduuABTNAdBHb7wrOq47H0UAETN4QPV+ZsUMHrjBL4N+HvSzHpjXGYWuptF2zsMMZhVlOFNeIQhZiudnIqhAGIHUXVUDmVegGAtXD4JEFgoikBWJPMNPgzqpBTIvQJBBUhny9wQqg74Mfsj11F6zdH05JxgDYYcuhwl4e0A+epWgXBfpDxRm0SAAkfjEZtBHG4L0tgCbfDralxru/OsQgN8MJFr+2+uTreQfRwD6uAcBSPvVXWepN/jX1IIlyK+ZgkcIZeA5+8GpzMDvciQegEl5BgQVaEYgCMGUUa7D9A04JKCYTXoGVcpLH6c84GdiNfgXLDm6ZyLGxIIK6n6KPSo7FMkj0MJ0hS6KCeiucsMA1AfQMIN8XQb4pAb7ymxAQA/+WD3wTMEEBQUMQCOAmexOwB4B+PX6egbAPQjApltmofOme6j5tA1AIwAP/2Uwt8wh/jiT/71S9Qqo/Griu2EIKotWF05GBkBsN1hhBHJdziO1IB0rItAejbKlWfMO2wEq35VECAoaEAOhNghOyPsRlO+zeXSbdDlMQFEbNFRfeokMVDYAWSKMpppGmikodDC5QT07piDHK48IYNUBP+3XGwE9A9AIQNe9tvGHN/hJ+T0IQMijgGI4DBhAKgtz7EH53uDvX7cfvUYJPZXB2w70PQHYzQxkr0NjFwi8AlO2AcxFb19w4Bk6yMioBVDPnOdkS8jP/GHew9BL9bLvISVf4JzVhGQvaPct1ExAYgfK7VJ2EapjvhA81UqXxQQi+GJUA7YsTp+LSpC9ACiDvnJIWREYqMzAGwK9etCoA27gWUSwxgBsPH9qy64CtAn/YWcC9hCATuvZASIGYMtB1dUiABnc06BNYJHVenO5GpGXr8Oig4ghFGbA9TyiKnW3mES1GZSBn1UDcRmWwCXlTuypBaYPzlA4a2ag9H5RAcwWXOoeRCVYxPCnmAJQDdXCLI5ZKv8imACjE9noYX9J55qWbQHFEIhkBJymFgEQ+gZAvxWYNwBWuL8+DTjaEFSWAdP2gkjyb8F/vwFIDwFsGQKPQQBbg39NHfD5F2aTP1IZeuoCgGBQu8Furq2Vk3QZhNVGcOD5bGpBqsGqZhp51i3LrYFQVAKTXwyBG+sKJCQsusE6Yxhy8+YFQz9CRO9Wac8norcR0W/k4/NyOhHRPyKi9+XFRj9npI0h8vYAoNgC5HeV7LCqAKqFv64K1Brzyp4B0AM6S3Zwk78O6pgBaATg4TygvQrRX2UYXq+XQR3ZAUYZgLQv5UIUQLTqAZhBqyqBXNd5JiLDFJrrsB+mtD/nP7k+U/or5+Ye+h/+1LmWylt0FeZTSE02JJV3pI3C0aSnng1gra9hPcRHSf2wjcF8PwDgS1zaGwG8nZlfBuDt+RxIaw6+LP+9Hmnh0XFyg9x4BYI8xSMwoagBelHQKQ/0eVowTQvmifNfnhgkf9OCeUr6+lX+rc+vpkP+y+eU/h5MBzyYDmZT0Ae04IpSflkGXAyBehqwLAwqH2/9W8zflP+eoAOeyEuHlbK05DDhbVegRwAz6v3rgZUGlBtweaDKAC7ng/+AliFIXb7OWrc1SJY/37cOM5g1c1bPN7Vtn/nkmGwTbKV+Q7fh3lG787KohZWRT+4dlzSjWi4Nw4iYhTADY7jWglGPlw4NMQFm/lkAH3XJrwbw5vz7zQD+lkr/QU70DgDPJaIXjrSzSo1XoN6o1uuJKgqALqIeipbgTZpDAP3zpbwofy71eQQgNJt82wjAb3+tpb9HAPr61kIckR3AD7r6fOLBP0o+f4QgegjBI4MeaU/GFjNI7dlnKgN/+17Wn2uqL14IJZrYNbJgirwrct/tGhkAt8IITrEJvEAtKPo7AF6Qf78IwG+rfB/MaR/CFu3xaxQUwIYpVLiPggL0kuCiAjRbgYk+3bH+CwPoT/u15z4OIFoKfG8QUM+luDYdWH/YPVegRwCpbeQydlD6gT8aLAQkY1/LOOwAOIALI/DGxKr7C0yMPA02vmBBum+Zl6DnJJSZihyvU9izDRyyp0DqSH2MvQUzV2af+jwXtSGlVy8BnJdA7AIpT82bHkFOhxaCNVyY1aPaYhm7Q78jYuauba9HRPR6IvoFIvqF5WMfcxdzvdH31YE6VeLLUaODdpEPYB0RNHnU7XkjYjQRqIcA9FHKjCKAUsYhgFL/mh47aAhM/WsltJfaW7aCsA9B/oaprNgOuvUiVg8AzcxaW0H0vKra1LcNnHsp9xHJ7r1RPTpmA7BTkMCHZXnxDPc/ktOfAfCUyvfinGaImZ8G8DQAPPnip9ZXRSa3clDxDNSAILEB6OOsUEAx+gHFRgC0CKB6B/oIIDL+RfDfxwGUI9mpwKMIQC8GCsQIALBLgvU8ARoBpLbykajYAFId4hqcynVNe1SCBUtTfg0dNJ6FxhtApY69ZNyIyu0YIYKEJOS9TMVlmK55BOAZaM4niGDFS+DDiCeSY6u+TOpb1uHD1TuAJCxHZipu5ujTWwG8Lv9+HYCfVOlfmb0EnwfgD5XacGsULf8dGlpgpb5HAGvSv1enp1gC2Y9jzbqtDVy+PoM8BsHZ1Pmd6li3/u+hiGFseR6Oa0fqdnaOAc+Bbb9FcaN0zOKoEeKMJH9v4RKhvV6DISRARD8M4IsAfAoRfRDA/wTg2wH8GBF9DYDfAvDlOftPAXgVgPcB+BOkXYp3U40aZLV8GFsUIJOFcj49Q1BQgI4IFM4JVD8/uXMZ1DqqT08D9iHAfhrwMZuBekm/thw4UJFC2RpsAAGkcn07wOwMchqGT5gwO0RQr40P1AWt1PfoQCODJUvGUUQgirCEHushGNkHwC6mX+rN+rmOLATS8y/zDzq2gd6qnnW24GKmFnsUuGTVS88lEDRwRQdcY64ubHLhw2rw6zUGtoxtQ0yAmV/bufTFQV4G8PUj9R5FReePjxF5Tuo9BWt5vY92XUIvQ0hA599Do5I9Im0HWG/jeLi/3Yd2Jx+Judvq0+GEe780mmmpuxln0ka/EeqhgTsbMSjS3UwYAprIQOMaVOiAss9f2wO0MdAHC2nY5YNmClJwsLzYCCDIIF4IRFvwIwSg8/RUgK25AGsIIJ1XFBNNCopQgFEJAkOgJ48AZlpnFge2YbSAjqZTkp+o6Pg9RHBO0p4CT8UWoJGBChOeFUooZfI7fMhSRw4XxpzrmUvZQ54foPsxgXGFAzABDxeZf8C4QlqD4AoHXFP6EuYpoYTrJZ03xvFyvv7czsfmz02hZ+CR92KIthYDOaquG5J8Wy+8Z43fGxfwbKEIrY3ECdwk7UGbI3QZSACdpcPkm3PIoNgCsj1ABwiJ1BevgJC3sLYrB/kVgZz3wHkJthYDjRCAtgPoEGLZF6C3KaifEtwaI20UW0EYAQpI9bS2gF48QOsNyPk3JL8nnd+jAo0ItI3gGKv/qVQnHQVSPiODoXryO2lhv7MxgMpGqhMxZl4AmvI6AmmJMUEFV9OC6yWhh6tpwcOFCyIgJsx5g9IpH0dnET5+rL1D5+Cu5/YfC+m4gKbNHYih97LvP4JHS9FcgOPqOQ+TvBgkAOJw+zE2+j8As3yY/0vF9MMxawIGxyY+27mRKiLwM/7swiCjCEDajXYHiiYDCZmVgpvw4Pi4hQJSHnXvzhaQbAUyT/58uthMU0EDPdqDAg7KK3AqnXNvgzWyS6qnNQj13gbpe4ljBqYc25CQ6YKHh7navohBNNc5BNgOIHpshUBvMsY93dPjRheEBGB1f8BsUS4ooJkiPHHXHhBZRXsDvUEJDSKoUYBA3Vwi8gKk/B4N1LLdTUI7hkVvC0h1+JlvLtzZuQS1R6DWW+0BvbgAT3ttAXuoRN1lyV6j8PJ5kfhyvVcPcj1tWpuXGul/DjRw4OOeU4pXSP6QCXqvBMY1atwKOC89zsk+tTBhnuyKQuTGU7fNo3r6LKO9Otrm7LyN+m7KdnBP9wTcUMTgoyCzrqD+XdL0lmIIZw2uTbP0UtJ7AUTXeqDnDFBd9ktb9E2cQScaUOr2doDaB4sCwj533IVr5+IR6OVNaX26aTegtwX44KF9dVlbQIQATDrE6yBeCRWzwBYRLDkuQOvp57QXLEfUtRVQJLMKgYqMgW3P+j0S6JAfmDdtL7ipuIBnK91lLOVdj7dNF4MEALQIAICsJlx+CxpAHB8A1HPx++t0MzlIew5gIwm1d8B4E8gu97UHBdh9ANrpqj3Jv0Zji2AE5Y6Zc4oqyffYBiJPgEYA57IFtG3k9jsIQNI1CjiACgoo9fjz/ES93r/w1Owv6HczPgcDMOsLQL7rSoR98/oviyWt0eA3O6oPbc0Z8OmPi+dgK47/ns5PxxoR99Da13sZSMDNHfARghohaA9AYwVda8LFDgDWNiDkvQOAnenlFwmNaMQWIPlKG0caCw8yJ/4R05afPyKv/2uGs4YCPALYsgX0EEC6piW+RQQeBRwwFcktA9WjgJLuBvIIAogGv48XOIb817D1ddwhJLB+K+daefVxobVgnAgNLOCTjHh7+uLVgEdBrZuwbxDcMhBG+xBcMl0GEgio2WgEeaArlKAXFAWgZgnW3zJ7UF8H1KytQCpr8vO9pazfL/AU2osC1qS/3vpKzgGrMx5gPQQHcJ67Xh94GZjFjiGSUJ7fmH42Iv11emQH2IsA+n2JUUC1DWzbAkpeQQQKNej0VJ4MAjioeQLNMWAcox4EWU1Iew6YqaRvrS50t1jWY0r6Q9Vp0W/gOPfTuSlCDj17w5YhcC/p59UzBvrftnw0IPcNFe/Ku+lw5D1rEXjavLPOxiP/CxH9Wt5c5CeI6Lk5/SVE9KdE9M78978P9yRb/ctKQqt9svq9thP4696yb9PaBUN6y3+X+vyH3THqnKrXjZCXMovTfa0unCSmvuMDszkX/TtJ3/TvwJzzLWYQyyDv/dV8iykr9ek6S5vMrg/S71wGCQXU9DYmQNOaN0A/N3mWOi6gnPOkpHU9l78l/x2Y8l/NX8p0GMDi+mPeX8de4I/sBr8ggPSXFlviJf31aORL/QG0G4+8DcBfYub/FMCvA/gmde39zPyK/Pd1A/WrO0g3RCdwNaFo4pD/rWl03bkR2usGehTW4XORZwaj+WQg6+vA8dLetrXDbcgtIhh5X7cdKHQ0DYylTZsAM/8sEb3Epf20On0HgL+9t283RVPnnreWDRulJevccjTXeMJM7Vy2A6ZdS4nVXXFd22oeuklT8QlL3stOzg/NOYytZYYMoHwvckuU5hSUgVzaFuk6dj/RwE/32Br/jvUC1PLb8QAmH6rO3kMBWg3Q51atmJrfPe9A3aswRgHJI9EyKB9/YOumggoWxrAtQOgcIuirAfxzdf5SIvq3RPSviOgLeoX0vgOH//djcaYbMg6f2+fvYbm9NvYi9qCBA6bmI/Ow8wAyEiedR+32n0Ukpb1E75btSH5dr9b9T4H/a5C727+ObWA3ilMGwZ7d4NQAoWOQwx7HykneASL6FgDXAH4oJ30IwKcx8+8T0V8G8E+J6LOY+Y/aTqp9Bz7tqdpl3hvv1JKOFIw8AhEdys6wlsogVu8hrVdfj0BssY8QwIIJ4BQrUPelj6l8VLlajzLqCre1ngOobnud+wiu6s4i9envSrat0Y0pRIBasngJRuf7R7C/FwF4rOQv5zsQQEpvJbhcb/R6Z8335T0Vyb8SH+A9A2s2HUkTj8OCLPkNA+t2Z5WOZgJE9FUA/iaAL84rDIOZ/wzAn+Xfv0hE7wfwGQB+YbNC92ESE3gnMzg1VuCgXDrl5QXw3paZGhdfGoh2gB8w5cHomIJSIcoClh2o3VMTSn93qgWy8cgBAJiHQom9GhAtId72+3QGYOuLB/8eWlMDSh7E4cKmvDYy8tRFfj3X4HY/W4Z1bjqKCRDRlwD4HwD858z8Jyr9UwF8lJkPRPTpSDsT/+ZZerran2oEvKmgIflQJuayUmxZcz4P+P7gb5ciT8hD8lgUIR9IZF8ANIMqKXVw6wGiGOsELoxA4gbEPiCf12EIESSSFYh6tgGvSkRuP80ARqT/1uDfiwB6asCoLcD2peclWmdQHgUsgSAyXp7AQ7AwlacqXoE9tMkEOhuPfBOAJwG8jdJH847sCfhCAH+fiB4ivb+vY+aP7uvSo6FtKE55UYf0Iq6MpXvCRIdy7NUXpR1YQ/eqLhyUalHylg9oHSGUvIU5tIgg1aIZRQ0gMrVmRLDkVg+OGUhA0ahV/xyGvyj817SxQ2f2DMCEBq+oAan9WH0wDGODWej+RkbB2lZbfnHqTu++9YakKaHbFQBj3oFo45Hv7+R9C4C3bNV52yQDI/l4l5wm3Ff7wgMODMqzt1ovgUByOGhe20yDfsFUZgwe9O+y6mxHuqpBDkAN+sQgNKKou+U6hJDtA8IItKTXiEAzAvvsxO26/mVFgx9YZwCjg7/38e9FAL3Q4EgN6M0RqAhhHa6PeAWkfvPdBbENw0R8HhfhXaBkIMl2BEZ3noE25DXXuA5uQBmZIsNghvKLSN888Hu2ARmkti8TZsQoYssgGJGgCo8IdD3lHhwj6CGCVMapB4hP2/44dUDSV6T/yMSfuK0BW4abGCRptr3JMIBy7mwFum+VOVhGM2QYDFQB3d/IHrCbGVBdgLdHl8EEOP0NMi67pvpO0oN9AptBHj3gxb3kA1nbAGDVg1TXEtoGJhyMgVB7JHoxBqmsVQvqoG4RQe71ECKoZbhlFEKOGRS0MKoOSH6DDPw1qGvbDKAbgTfgBfDkB3xJVwyg1m9ds3tCibc8AhppWmPj+r2egy6DCSgizt9dRwBp4hIY4Y1QBJLBzmmLLXloM1Vjih74LQLILykvNKINg3WZp4QCttQCYQjCgFI72Zio1ATt8ksPwz6DxkWY0YeoARpRDCECSSN1cZAZeJrgkETp4/bg7yGAKN5f00h8/ikIQNdrDYfUqAHeFqDr6vU7UgV0Hq0KiHvQlxej4I3OHbg1Cga/iZNWvzk/CImYWq02sLRqkljwwijQSqKIe8uxZyXWiCKacTYy10CCYnRgysF90CKtDk6vtbPlXGARjwfb9IKFGh++y3cOBiDvRL+bsI/ynE5AAPLbRwZqNcCrAmu0IB7IDWPi9X6vkZ9HMEoXgwQKAgCqdGLKFyAJBbkSqjuEmRu7QDlHRgYCu4kwcaTDZQOhM+B420BJd2pBNeq1aoEYCQuaUGpBuhGZrtw3/JXnoq8PqQcLDpw2toS2Wbi4DHAaGGWzEocIXIubIWlesdk7+PW10Rl5WwbAPQhAGEAtMxkEIGlbtoA1W0ZPmMhvG7eiAoUUI2R1BDouwg3V+WKYQJcCuA9ku0BHV1g4MYMJAOfIQW1H0AbCxvraeWdrwUPGVYh2TgFQ4XlPLUh5hEkcN68hIu2G3AooMn116sHsnot/CnMn3c5atGmj0h8uv6djJvdECED/7iEAnWaP2304KJtCF01G6sMR97eHLocJZONg+e2v5SODsgGRwQwsC4EoS39iHJYpb8yIggyKDp8f+JTzyW+gbxu4XvJW0rMY1ioC0PkX0ZW1PQCIf4v0z2iiIIAzIYIDcmSiKpcWEklpC4CDMANGcXtGCMAzAxnknin02NZa0M+eqb7+t2nbDZybRAA9b4D89raAkQhBHxRkvQRa/5+KSsEOBUSoAMCQpf1ybAJMFrVEQp6payuoRsJqG9APKnqwmmLYNW7UWbMFRB/voSOF5Nox6xF4yRbHyK/r0p4JljrQH+jd+oJ3tRX4E+U9J3kE4K8N1RGU12rAqE6/9o69KjBCxxoHLwYJiE2AGMBCiYEtnJX6BFt5YhAIvDBoIvAyAVnqCyNYSn2EBZzWJmDCNB/Sh5e3dr7mfBREMDMWnquE7yCDCVMyPk4okhs05d+tV6DeYJXCD3LSQ2TpTMnI9ETeinwvIiiSH8ABc4X3bFHBAlE9YkQgdVdvg0RN6slV8nyQn0dMHvLrZ7il93sLe6mzI/Hrub0+ggBSf6YuAtDXJV0bd3vegD3BQebZKK+AL69RQJ1MpJBBLtNMJd5gDpeDBHaSN35ogwijooBo/bUoOKNH3mW4h7Yi29LvNQv2OCLYkmKNjtvxHGy24/Iunb+2fxEaGkvz0nWrvzq/hP72EICPBYiu27r1d7Qmydfr7fX7GNLw/xgPwWUgAQawAJRfLC85ykkhgHQhzyzMRkEGgGXCggVT3oxxWYBpShIwrVC0ZNf2lJYtm9LQPCxpQ8cDT5iQEEFCBskGUFYl4rzRw5SQAibkacCEBTMeiJYcoQGg/D7whCUvWdZDBB/Pr8MjgvKaSro1Ss0uDkCkv6CChXNoMmlPQc7HVDwHBxDmYutg8xxKuLAPQupYnnvBPr3QXnttXcf31M2vJH0v3atNowhgcciht2jISHCQLy+qgHWJqnOFAg5O9TXCcJAh3FkksEZ7ueFJ8dknlDuWepKwZ+1eS7tpihjAHhqV+Pv7FasOvet7+nXX6CKQAMEGtVF28LN4DMQgKKGEzMZLILEBggKAhAqQvQBJmi3gbMFPWzpnW0HHOyDn1+L/L0cuNoEJjIfIi5gwF2Sw8Fy2KwNPRi+3iCChjgdIH92ExSCCOt8gIwCfXsKWswcjxyJoZOBRQUkDNYgg3X+W9LLNWgcZCPX2Bthy89nrrZvNhOdu2QJWBrC1ScSBQBoB2OtVensdXo4P87PveQOk7IgtQM6L1Nd6v7MBSKSgRQDOQJ7ve2tq8bMSCQgdG0F1m3TOVYpHYttvcrGKVP9+JNB7BntsF7693pTgY2hfH27m+YrX6xx0EUhAgtkYKLaArM7XiEFC7DaUKljmUWfOuuTzrL8TEw4MEFUEoG0DUq54C2BtA9fLnL0KYitIOnTS6xc8xIw5HyfiYh8wKADbiABINgIAygtwlVtR8wKgvAdAnqIMdz0hgzR5ecnt13kGByw52nGuErAggHVkINTblWjLwh9J/Z4r00ziCQbVKDLohlgHCCCS3NZ70HoDDlynAXvdXxDDmi1AzkXyXy/p9zXPygbgQtpZxwe4iMHiHWgemaFNNtXZd+BbiegZtb/Aq9S1byKi9xHRe4nob2zVfym0NyprRIIaS/KzSIfcopvSl296e69HZTM5F/o6F9IdQQI/AOB/BfCDLv27mfk7dAIRvRzAawB8FoD/GMDPENFnMPP2hHiJEeAaVEc5QrBGrVGdb5wjBkX6V2meYAPl61zyZj3JcWhtG1hAIBcJaOMICFjyduWg6i0A4SrJ1WwToDRHISMCsRGA8m/wKiLwW3zViLrsDZAw4HxMUr6ulCAIYcGSZyrOmLOtwCAAzEqySWxCtYwDfWQg9BDrtObLD1FBIPV7M/I2jXcdW0LPC+ARgA708n19uAg6s5J+yxtwXfJZ3d+fCwrQXgFBAYelphUUgGofgPcSLOvMYpMlMfPPAvjoVr5MrwbwI8z8Z8z87wG8D8DnDpa9KHrUFv97uqfbolNsAm8goq9EWkn4G5n5DwC8CGkzEqEP5rSGiOj1AF4PAFd//nlthszFzOxClQ6t9yh0ULIZdJDMC2kOgb3uObVGCgtT8QJc54JtvECNINTegoQAKiI4cKpzCxEArW1AJN5UEECMDABkaV/RwYyp2Au0LaHaF7KkJy/xYmSQ7m88gHjNst/T9bt+/g0vwUg/aph3tQN8XGwuxZLvPQfqt9PhxQ4g6V7373kDJB7lYU6X82sl+cUWcL1MReILChDJv3ANjlsW9y0LAtgQaMcqJ98L4C8CeAXSXgPfubcCZn6amV/JzK+cn/OcTqYje3dPN0o37VE4N91kf58Ntp6jkAAzf1h+E9H3Afhn+fQZAE+prC/OaTsbgJnSW/YgYAAgMKc5BCleAHXtgbIkERtbgVCKhdf3QWXz0+IdyB8MqTkEC6otoMYNuHiBZcZEC2ZQuqYQwCxLjtNUEAEAPJgOBREA6YPS05CnIoXZncfIAIjtBt6b0EtL5deRgdA88PGHq+ogluahLSCw5tuy9ry/X4N2D8aeAL/qcOMNcAjA2wCaSEB/HPAG6BgAjQK8LeCQdf7Dkm0Cy2Q9A+WYf59qE4iIiF6oTr8MgHgO3grgNUT0JBG9FGnfgX9zTBs3RaMWVbO/e0A3ZTO4Ccly01b1iPYwgLO1uTHX4phNSk6ho2aC8vErCx1Lx+478EVE9AokXvMBAF8LAMz8K0T0YwB+FSnM7euHPAM9Uvo/ZQSQzu0cgsguoFGASHz9CcggNusNQOYboKwPIHMKFsregAXqvCKEGTkKcTqkGPyMCCZasCDr/7J6kXgOsuDS0YWaJEpRbAVbyCCl9e0GOs6gRQBjyEDooYpSjKi7AMhadF9H8ms9foS0pyRqK5oPEMUBeBuAjgPwCMDbAup5GxmovQGCLMULJWsGXBepX1HA9ZJw4iHbCA75fMmIgMsR5RzAplp91n0Hcv5/AOAfbNV7biqKAHfXwuzSwvE+hPr6eF1u+XBe3+RESK9OtJd0cJC0JysKFWNkbqOukLx+z1H/gHYbtV3RcwMM4BLIr094LnS2JeF739no9+fd4KN0GRGDEWkvgImAYjH1AyI8s40gRRxyYwtoqs46k7cXADluQJ/DIQJMxcMwEeMak0EAD5As/wslFDBTCnxYGC52gAramMAl2hCoH522FaS+xcig3MOK7UAiGj0yeJh9BT1kAL0+gbp+DK1Z9220oJOeO5lFw6gCW0JvRqBGAN4DoOvqIQDvDfDWf3/uZwpeK8kviICLbcDZAiROQBCADP5FHWXuzQpdDvsFGtgSjmO5oUEhtjV5Qk+2YNiX4smnRXPLmzXyxbCoykS6ot+Xfo3K/Hhen0UXz81vXXSLCpwxO+F0gnmOkdp7GcBIHWv5enn9c/YMYKRNeYf9qc37kcPae7T9tdLehwp33ekr4+BikEDZeITtwjndVYiRIwaXvKLKlAqKJ4Gz20BLe/GnaltBiSZ0swmnbIWd8tqCYiuoKxLNZdHQBYSrjACqTSDZCGQGY7ET5MUTxE4A9L0HZntx2K3V5xxrkPraRwgLGODcV4UMtmwGpR2HEISOMeqtWfft+gNtXICNNLRt+5mNtU6nfgSMrocAvC1AyvciASW9SPgVb4CcGxQQnOv4AG0LWCRicFGRgd4WwLCIYIUuhglUF59OQ7z6r2YGZ9qFWF6m15Nruk3TU5DtjkbeJkAAappsXdZuXqoayAuQ1kVF8nkZ5Gz0+7J5qjcsuo1JZKXh9BulDW8z0HslCjWuR3GVDtg79g5+T2sMQKf1mEFUziwK2mFongHcBEXoUs8Q9EdPOky4JrrjBl0ME5B5A4CW/BkacOJsyYDOlcvJ/AHtE0U1EAJ1PoFHADIPntzgl6a9t0BWICovJXsLrvJcgatpMYhA2wQWJkxMWHIbJT5AYhGUbQCA8SLo9B5C0Hl0eoQQIrtBDxmk63WQ6zkKs2Ico9Qb8JHOXvJp9WVDe5WFTXW8wNpchR4CiAb/XgQQrRMg5yLlpQ8aBej1A6N5AYelxgmY+ADkCEGmKvmLjWD1sV0OEzDkEIDZo9BzNz3Ik+PwKFtu4aRr0gRuezOqkt8jAkA+uswIkBhZCiCStuzg7bZb8scIIUnv2m6V6GRQg6CBVIdCJw4Z2Lag2lCDkOMvyyOpdkdhN+AHIP/WsmLN9u8Dpi7PAHxfdB/sJiMxU+j1racW+LI9O5TO19tdK8m7/ldPK9eAS2ECSpKXBFazCJmLdE/xAjVPyq5QAQlEandjlV2JJuVB8IO/IIBcJvIWHJiAaakIQCGCidJehRM4I4eKCkAoqMDbClJbHWRQIDiF1z1CEHtBWik4kUYHaUD3kUE6X5+n0KxvKO10PtRRae+vpes9NUEk3gZCaOIOFBIIEMCI7l/T7eBeQwD+qOMEIhQgcQHaExCuIiS/dVxA+rzq+QpdBhNwZCT/GunBrxmJDhJSKgapgT47g+BeqkigIgIgbUNWJTeUCpFQgaRna6bUVtMB9VE7qVzu20nhHTYEsUnUshUZ+HOJNzB1N33BMLWDO5b2m4N+MN22Nc4AfP+8R6cnsbf2EbR7Ecb1ee+U9wbUc/t9r9KdYQJcx6Pusyws1Fwo9oLdzZhPRiSXQCZ5NeyRgZfCXBmtIAIAxWsg6YIMYgSQpXCpO5/LHH6HEKpxcS7zEoAxG4JHB+U8sBuU1YdZxQjkh+b17sVF50XGuTVJv7V+YC/fHmqQgLP8ewQQDf7IHSx1pDrr3P9at1qNGG5wo7axZQtIebRbUBkChRFoVLxzTFwOE9hDG4p/16kgKgDqA10LKgLqQG4WIyE26oWW/mAl9TVtIgDJuIUQEvMqunCDBNCky8ImhgGItdXXjTqdObpu+uTJ9WFtt550nbrXPJ0y10AzgGga8AgD6A1+fa2nFngm0qgHaKV/hALSt4ucfvTjMHR3mMDeG2YbL8CBjQBQjKFjG5gV5Jd0MQACFRGYPCBMKiZAkxjr0rV1ZiBxAA1CKJCpozZsqAuaIegYhHD+QrEV2D4cOnMH9izVvcYMIjoWDURrAMi5ZwBrg9/M1vTXGhuANwzWdD3g/foVfqVgjQK0l2A1RJhgx4s/d3RRTCC6n5J2vBCodSlIJcPE2wa24wWU1M/9mrK9odEVMyowUlvqW2EGdtsvbCIEkeqlnQ4zEDXCXqu2AL/Qib2XePCXWjbiBbZg/+gA1wZGb5SM8qQ+krlmkMAKA9gz+H2kaE+qe++AZhIV+seGQECrBMBm9Kwe/Cvj53KYgOpkx+4S5h0hGfzRvILKicWyXtNFdbB1WcQA5AEt0rvX146KoF17YhuQFZAq3Jc6pJR8gFGeynS07aCZa79iTFxlBqW8j8+PkcGIjn/s5KGtcn7wS1q0J0CrDky7Bv8IArDndou8FvJXW4DO4zfeLaYAJjtwdgjPy2ACJH9s0jaZQUBm8dFyXr0Fwgi4YwvQg9wjBG30CqU+0DCDUq7YCvRVR4O2gYV1LMJsmEZBERuqQlVrPKNomUGqpaoNQH9W4Vb84JqUXssX0dFIQKB7wAD6uv3g4N9AAFoN8KHCQPbsRUgAWhVQDEAYSOEGcAb01UcI4FKYALJRc4t70cq1tbq5zhr0+7TJZ1QCKgI1wO9S5JmBcRVmyd41GgInM4OZfFCSDVw6MI25GyPbQcfN2LgQSx37pHg7weoEq/8OJODzRyqALtcb3KvtKXjfvR4whZ5dIEIBwIprsIGtm10GMLaoyJsA/E0AH2Hmv5TTfhTAZ+YszwXwH5j5FUT0EgDvAfDefO0dzPx1Qz0RaQnYga7T10gNdBsrIMigVqzVAvEkyLl3GYoNYPYDX7rXswXAuhFLOX0/RzIDLfV1HyU4yagTri2tQngUsDCFbkYxIqYyDhHEPV+lU6T/MaTfT+QBEATg3X26bKQapOvKhhBa+NN1CRNu/f2ynLg7XyRMeDKoIE0aAniZ2olC2k0IJdg2mMFR+w4w838rv4noOwH8ocr/fmZ+xUC9hthJ+TRmB1mZGvQmudH/largGEGU39SFmBfpMiEqUEbDyTOMI5mBlvpbJIuH6MGry9ZBXtWFdr9BuzBJ6lPctg+DftQD3rTtmLMP+Al3PhpkAMOGweD+I2ahf0eWf20L8HqynT4cPO9TmQAz/2yW8A0REQH4cgD/5VY9q0QAJmfsjFCB1nsI8cjkWp6A4ioErCtQlirzaoH/NI2NAO2HpWMI+h4CieGnhiEYd2NxO6a+XU2Hti79HAJksIoKVB1G3zfX03TmXgCSUPQcgD4y6MHpm9qrL2pb2wLkXBCAH/xe50/pbZRfawBctxFImLA3BIq0T5Ifdbpwkf4VBSxZd26QwEENIEbVAG9ioVFFXwDgw8z8GyrtpUT0b4noXxHRF4xWVJBAR+/vqmRlUKPheNzk2dYrIrfMGumPm80H4z4K2D5EkiCqO/yDNSqlvBIM0/s463WfR66XlW+5Lprh2xbyi2p0+9opt7Uo6DnIt91eiwKZ1hnAWp1r16PvSRiAXF+r16MAs2M3YFUBbyQMxoamUw2DrwXww+r8QwA+jZl/n4j+MoB/SkSfxcx/5AuazUee+zw7+AMU0IQPU3TMdgFwfVilDOuD9bcCzdLjKFLS6leRkVC/PP1ZeQ/BAllezKKRGgxkj1dNTY6ORAY+D9AGIGk3Y6o5XZ997MHOBR1HDGznprXgn2g7MJPHD1zHXOV3YwNwtgBvCKxTie1SYXrpMEEBZcqwWlAU+RxMFQFkiU8Hf1x/PkezYiK6AvDfAPhRScvbj/1+/v2LAN4P4DOi8r3NRwatAJbbAet60hG0cLXOrueLdcHUhz4yGOpDkfhWSkcoYy8y0HkknyyF5qe/auohgM17Gcx3TlpdAkwN+OZawAD0c7F5991TD1369MbQr4Wa2Ae81JfjIAIQOgUJ/FcAfo2ZPygJRPSpAD7KzAci+nSkfQd+c6g2CvqrJT3qsW5Gki8uBExqubEpoQFtWxBJ7uOue7aBNr+9ro1nBybzeWiUAPW7DEgv+SF9qMjAGOeKxK8GRG9X0Pl6NgGNDKTdskSZQgjpPJ7EVO7RIYCtdRFuAwF4Jtaz/ntEoPOuMXl97hGAN/JpyQ+g2AEOS0VexQPA2gYgcQF14Je4ALEHaATA9Thd5/QN+/EmEsj7Dvw/AD6TiD5IRF+TL70GVhUAgC8E8C4ieieAfwLg65j5o1tt7KIRCR9YSxv4fyJSGKHI8run7B4pq8sA6zaBUg62f6u6bkcSRv1dswnU/NsLpe4lXaef7BPr+aepMqPlI8/Bmq2i92madI0C5KJHBYN07L4DYOavCtLeAuAt+7oQVS7HLOlF0C2UkhYGTbIZCaURnbkhT3n5ca5ogJAjBLlGEWISRmDdczRbZHAoXDTlK9GH+bg1C1FfNQhB1eGRwRXEj5+obI9ekIOVzrKykeTx7fiwZD0hydsESlmXtzwFhxDOQYJGTqUteJ9+WybpbQKSZ019i2YT+vwi4b03QMcDyFGjAJa0xaIBbxAscwc07F8ohdU4W8CN2QRunTwXjLIcAUE1JBvh9FttGBtBkHZu2mVzOClar69T7yn/KLcG888manvr+Z0TueymY5/VDXsHzkcLylRf6S8JtxOdGTnYR/T8hdLCox4NUFaPs0uBGQk56PY2vAUFACwOKUgflU68iQbU9YIkECMDorShCRDbCnR+jwykjNfr2/ys8trpylJO72qkaXJ9HjGebtE56kj1ONjdhA1rVaCN9LNqVSvto7b8sdqObLq3CdRjawto/5SwKWNCEScbVgn1WHJaRgDTYZ153F0k4OnED0kzgb32gl1oYAVmjtT1KGhE2t2Gtf/cdNOI7JE8nzMw0MtAApy5lzwzSn9lWTtQjgzmAgfS8836v0cDEycfqq5vYYEHCSEU/62W8IRJpgEKFijRtFOpCqiSsKIA+8I9OjiAMJG9JpK/pyaMeBH09eZ3YDsIIxWdxyD1JV7QpGdDuEnyMxl75H38mry7T6dVA2Y8Ddj/js6LF8AvMiJzBlw+Mx2Y7dyBZv3AYisIbto/EmcgJIaCtTE9e5DAHrrjEuwUuovSe8szsVn+iHu+i8/J0+jUm8tAAsgWTem1sKZsNOZsL+AixdW5RgOL1EF5Yn+1nvKUjmXCf3Gqy4QYkTa5zWLVtRKfqM4RKDMW0TJkTZOqm4gbu8I8CRoRg4T1BvS8CB4Z6DwmH8lip24FIgA+1kCjA6D1FkTtpPz7VhbaorX6enV5y79Pb/Ip5LC2xp9QpKr1vAO98HBtC5B8YgtI5y0aGFYRvamgIM/1Ys96JPAo4gGAs6hmN1LXPd3TFl0GEmBgulYW91ldIFhXPlFNJ+QNF5xtYMlHYmBK0QIk25bJjCqHCMqZ+FjJSlk5n3IbJIhDynW4rZ5ZKMhBsgoCEMk2T1byS5uzQwA9ZADYyL0oAlF7FDQq8J4KT12E4GwIW7QF6/fUN7quX72+7t/vWfijNvx5T/IfZwtQi4hwXUGohAsHxJTGAIDVOTgRPeuRAICz2gCiud63TcdGJm5FAJ6bTtHrb7Kum6aWcdxSRzp0EUiAGKDrarxnUbWL7oysz8MmZEDA2QLaoAGFGoSrEsEiAmfdL3qUmAo0Mij6/BgS0Hnkt+QjYuNxSOsSOATQQQYTceOlOKjfke0g8ijIKke9tQX0x+sRgE8foS3Goj0We+rrSfyt+P9I8o8w1LWJYd7TUyNPc9j2Ys99LIDfbnxhAtR1Ey2oqC6PhzpuxLM1rb+jy0MCub87vq3BerdfaJPfX1Num71IwAcjedoref3HtkW9wbUVFqvzxXn3zW84Nc96X7bnInRj9geZz00hwKPq1e7AtWzBp6zpIpAAGJgeorCkIqTz+t+Uffyc8+py6UglOrBeF7RA1SvAGSlwlchlVWFdLKenqnMfihOBcqgCV2+FIosI7HJlJHUVVMDF2wCkWARBBflJ2D64+ALAzU50en1kO9AeBbEVaO9Alfh2HQEhD2Uj1BDRiHdA2yZGqL+8dyz5ASfFNyz7UXmf1pP8LRKwCKC0udR8xiOQNyM124wJApBvOqIo/a7YBMjcaE48Bxp4xPqXl/RbHL7J78puzT8/VXffCoI53Uc/PlNwT75johrPzQDORaMrXrWJSALtxP5cBBKgjATEIMwTknF/UfYAFNkeU1a/y1oDBFu4sGyr+/vvu/rw4+tF3yp9j4wBbH7XNQjhjvLhcUYF+YLEDZS67bwFYd0yDA6lfjZ9i5CBRwWy9qFOD20B7kF4xLBFIwNHYhn21rc5kDdsAxFDjfqrv70tya/jAIA+AlgkXb5LsQkACQUsyhYgKwktsBjfC9Cdgu9ikMCNoABT/4ncu/Nwo2TzEQ62q8tsrW+4NdOxB1V9OwtXKa8/Zj8YTrUFjJbfa1/Yyr+GYk5hADdFftXg3TEuR3ZyZN+Bp5CWG39BbuZpZv4eIno+0tJiLwHwAQBfzsx/kFcg/h4ArwLwJwC+ipl/aavz07XsDIQ0+ykL8WyUj++PYCW1RgMcoIEIS8gLF6aqs0IhgxKrwOaCn/mYEpX0z22YjU8aRGC7NIltRBJcBKEgBXCaj+CRgLYT9GYtantBNLvQl+95BXrxBVtqxlr6lsehF8k3uhrQ1sD3rUdMtMdYD0rH1/k007HxADXNewNKXEBeZRh6dWEtNDMyMCo1FCDdYA4jSOAawDcy88sBfB6AryeilwN4I4C3M/PLALw9nwPAlyItK/YypIVEv3egDdNxfzO7iIPfGjatlRu4zq6uuvSTztt+UKN6n15OaisfYA11EULQH6NGBmtwWktPP60VK3Us3KKTSC/v/fXKbD2HtfX/orajfCXPyrVeH1K+1mga57fl6vfk2pFvbeObJHZqQaY9uHdkZaEPIa0iDGb+YyJ6D4AXAXg1gC/K2d4M4F8C+Hs5/Qc5OabfQUTPJaIX5nr6N7Og7oDlEQBTPfGSH4jvuJe3POyNNyYvSaR1YZeyR2GtokYXqv4wKfuCXKeCDFI+0dXTqcxg7K5tkKmES5Q+sulH7XuV5oIO9G/tFViLQjTnIvklrgDrFEXfdaW/StdoxNNWpKBvO2q3N/DX6ogRgT0fQQDpHO6o9xZUDIDd/gJyBFIUrBGaVIWourEtd/suw2DehOSzAfwcgBeogf07SOoCkBjEb6tiH8xpfSYAGfQMpnQj/v1rHjAMEDwjkLRUY604uu4ZszzQcqEkKMMf10uUylBmCNJW1KXahv9AZHDbrjUGv2CwyJZqU+6f7Itofue6tJuwDlqYNnybJYx442VsDf7o2mjQ0DGD35+fwgDWyD+WKL5EowDW+dSgrtOJVxrI+cmnReUCGmYCRPSJSOsHfgMz/xGRvhlm2lpep62v7Dvw4BOfV9NZDRPOar9jCokhVHZQzpXxoK4rCGUbQDDoXcUlvelxTuZSf8mnB6M0A4UOSpqV3IIMKluxiKIMSFnaQCLAXBfLHaiBylnqHxhlzgITqd9s7AUEGGRQ0YRFGY0NYGM8bFnuPfldnCL7wCmDHmhf7doAj/rtVTB99PnbYy1X5gY4SC/nJTJwcUdhEmILUAjaMIQG/cY0xASI6AESA/ghZv7xnPxhgflE9EIAH8npzwB4ShV/cU4zxMxPA3gaAD7hLzzFPFX4GhJTfYLSLxnzWjhHVbDLYypxbejKozrkZQoz8AymgAGFDjaQgZmOrKRxQR9O4vvzaCdloDX4LOCy0IhsQq63RTNl/bk8lo6hsEdrVviI2j73acSnb/J3+hbV1/eo2LRm8Dd97PQlRAbCAFAZgD/mRhrXtBr05I5bNOIdIADfD+A9zPxd6tJbAbwOwLfn40+q9DcQ0Y8A+CsA/nDVHiD3kGMDoJhiuoAyiAoiYKcWsBmfFg3IxZKXYonvvx9fWUNqoCrpWfmYSFkZ4NvIQGYYekQgvmS9poE+Nswh/y77IbDeUDTbCEDFRqD74GMNmmHVqAV96unH5XrQRoMCBpmNpnNIfn9tdPD3EYBDFE05KElOVuIbqS7GwGoTKPaA3g1v0AgS+KsAvgLAL+f9BADgm5EG/4/lfQh+C2ljUgD4KST34PuQXIR/Z6QjPJHd6p7ssRoJoaSyH/wqETafqZNV4hZCCKR8U6eW7FraGxRA1mZgqtDlqUEEADe7Ka93WidVyW23SEvpBhkM2AQ89dxLkRGuNxi705d7bW64IzVxJ98Witgy/G2264Hk2sCUAd+71qTB5td5djIAYMw78K/R1/y+OMjPAL5+Vy8oIYHCBDwaKJWr8VfgUR2c6cwO8LKTUDPoG9jQtNV0ErDMILoR1ZY3IrJqhFQ9SXI7XsVU+6zuiRXaMIwFyAyoI8OJQzVBMwONDOway/2BtxUnwO689rWeay9AZFraM+h1m1H+rUHcc732yvYQQNReOnfpvm/s5wrIn5L6+kY19Pc3LghxgzFcRNgwA606sPKeCfmD5zSwiP1w0aJa0vWgQp8ZRI2Zy5vcAlvMoEEGcj+wH1ZpyUh/26ZmCnG/1EUt1ZWKAMTIIJ3DnAv5gdnf+GOfBPX9Gmm7RyNBQm3f2vQ9g783y3TNINpdQqxXxg345nHcgDrwaIgsEnBm8+aY4LFiCHKZKnOAG/RlXoFrN9XZe0krT9SpAiF68CqCqrOxF8AigmoIysxEIYDSAtVIRFEZfP+b9I6KAGwzg5pvjKKBt+Uh0Ihkre01ZrAV5ef7EQ3+qOzo4PfptmFbV02HNQi6/MUeEJEfIzvoMpiAMABS5y1asnYBTazkf166vEEEsnw5pYsNM1B9aes2CfanZiIU5Wnb66kJetu0VFT6bhdDhUEQWj2I1YGa7u5FGQ+3mIEPI/YGQk9bBrZN4rpEe48pDAcqDfblHIO/3xf54evbuon1a2ugyAcN9egymADQHfhhVlZSU6kFXv7XFMA/iQq9N55Qjyk4I19pWCR+E91Uy/WMh1JfqbILTmwfPBIg1YY1JgYqQq5nza0IoAxI74noQfvW8Na/1iPdtlefor5s1R/p+z7/6OBPv/ttHLv4jK0s+C2qQKg+1J9h4FCHLocJeKLgPjlr9loNINQlyac87LmWr4uHiHSVc86IQQYU7LE0yW26DGCTEW7gCzLwb0B9JNkFJqugiS2kqAeL7VszhN0g4CaHPbcMQgKK7AArJZyk74Umb9Ee3TgqKwFPqW1pekNd2JD8a306FvbXuvx1uRDkVzC/Gv/IDnKt+g0+O48A7oRhsFBnIHbJffMFEcgHq6Sq5KuxBloy9vsSehc6AjWW7AEqWLu/gmpaCeej+Ep3hBmUKmJm0LMZhDdDqRc+nLhHTQCTb6VBBtsvWUc+RvWNopGRwT/apx6dRfKvNjCWrTIAsuhhhS6HCQg3RD1qjlYFLaUnzgBNbrwJzC7blKmBpBhreU0ab3vG68qVMOmSjzvjR3F3EshCigG0eL+2abtVpIgP0Nch2zp/6bqauqwGsLnd+hDMEmd+wROz0Qr60mjU1x/ligaOBDvpNltUEjbZ1Dsy2A16DpDEluGvawiM1AiV3tq33B/cMaOEVbifr5cNSje2Jr8cJgAlpUfzMaxgpvoSqgx00lDOOkCgV67Np6RyT7r7ThaGIF8O7A0oFGOq8bqvYz6NjQFKUpq0XIxsnSl9HCFEuff67vV9hfk7CGCEevVuDX5fVg/s3QbBHjrp9ZeDRUQUo9izhNgeewBwKUxAuFYWmKIKF5ch14FPDPBkvf6eEYDtB29/qELm3HEPV666LwcQgpzLwGRftkUg9TopZOCYQmnLIwNBBLV8GeiKs0ZsrSIlka6yAKplPB4hNOUdrakHW8a1Woftg0Y6wDb6WBvgPYr6xkzdwd8duANtNlOLtT2gDAKUMGGDDhB8Bh5J5y3KpzuDBHrStJeHqX0KkfBqpG2QRQarqsQgBmjh7drV9VN6YawldogQYEfk2n2H99lhBjpLhA7U9dJ8IHFXPQnKvlDztsxgxDbQs6436zMgRgW9yU5rba5RjwHcBK2HEXd+ZxoGSIP5LoIJEOdtyMQdLt+4n0vgv03ZWixLPpGIYFjBHw00zVH1qZPs8rZs3xJkGbEfGGSgDRLRC2pQiD0236OTyml6cO1PtYu0TelrrBhFBSH5fIqRgB+UDdBy571VmGOmYKMg9RLtANT28Yl6QUBrA3lN1RizCUiGE5mErkejAQBYAhTgbQnR0YK7TZvA5Sw0qsgh1ErHqYi1bPQnbeY/ny5uG+I1+NV5MajQdchSu/VBNX1r6+PgQ9Fw1pctS5l1pWiFrczUnNd8/lwPHF/nGgOIz335nppxjNQ/Jc9RtFZvb1CvvKPt9lR9AV0EEgAD88cZS15teslmN9l/dLmCkYZFqE75xyTz8rUNoN9WSL6cQ8NNiK+XslEcQi5PYuzwbelukWqwuYcN+N/0IT8I0ybDTmBS/SzoQXtVbJtTF11YZNDo8V0GEJ+Ht6fq1J4M/yC3fPa1vlq+52FY7d+5mEODAuQvnTdThSPGENRXPr3FHnt0UUigiwCCPKPphTa44TBt1DGCDqK+DFl/Myopf3v6uiF9tsNe1Qo4ChHsob6dYE8dI32N0UrUj7338Kjo1A1F9tBFIAFiYPo4yvyBhTlHzyXJJAIfV/koEYJI+WnJFnHlMWgHmaSvPFyRirleAHWbdNGrJrG+s8mnqzVSUqW3Or3tpPc0NB6HUqxmMNeKTqOkuKmrpnsPRHqe5JCBuhnH0+oGmDFCWF0kylvEdVqQP30K7NroN2CW7YrqE1S0EW8QSf+1OtfSS7lGOOipw8JkUf8WhwD0UerzAkaODhH06KKQAIAW0jxKTt3R/T0NoY7B9vYQcbvl1KbEGLFFBGVuzip+XL27yj1CKfpsoItAAmITqNuQZR1wRhKmU7YNuJmGUEyQkCQZ+a9dXFgRt4y6Im2XTUbyBelbgyjY1m+TLULQ13WqRxPe2+ALeZTjpbVYzz2yKHVTRQ3ZfsD5t57hyNqbsYEMakhHrK+b7hspqBBAzz4gVa3MppT6Uvl1qa3RjI6sbDNqtWFbXQL6iGCIAp2f2KXrrqo+md51bAU9ujwkcNN0oTrgPZ2X7l/zOBFfgGWEiH4XwMcA/N5t9+UE+hTc7f4Dd/8e7nr/gZu9h/+EmT/VJ14EEwAAIvoFZn7lbffjWLrr/Qfu/j3c9f4Dt3MPj586cE/3dE+G7pnAPd3TY06XxASevu0OnEh3vf/A3b+Hu95/4Bbu4WJsAvd0T/d0O3RJSOCe7umeboFunQkQ0ZcQ0XuJ6H1E9Mbb7s8oEdEHiOiXieidRPQLOe35RPQ2IvqNfHzebfdTExG9iYg+QkTvVmlhnynRP8rv5V1E9Dm31/PS16j/30pEz+T38E4iepW69k25/+8lor9xO72uRERPEdH/TUS/SkS/QkT/XU6/3XfAzLf2hxSH934Anw7gCQD/DsDLb7NPO/r+AQCf4tL+IYA35t9vBPA/33Y/Xf++EMDnAHj3Vp+R9pP850jBaJ8H4OcutP/fCuC/D/K+PH9PTwJ4af7O5lvu/wsBfE7+/UkAfj3381bfwW0jgc8F8D5m/k1m/jiAHwHw6lvu0yn0agBvzr/fDOBv3V5XWmLmnwXwUZfc6/OrAfwgJ3oHgOfmLehvjTr979GrAfwIM/8ZM/97pA1yP/fGOjdAzPwhZv6l/PuPAbwHwItwy+/gtpnAiwD8tjr/YE67C8QAfpqIfpGIXp/TXsB1G/bfAfCC2+naLur1+S69mzdkuPwmpYJddP+J6CUAPhvAz+GW38FtM4G7TJ/PzJ8D4EsBfD0RfaG+yAnP3SnXy13sM4DvBfAXAbwCwIcAfOet9maAiOgTAbwFwDcw8x/pa7fxDm6bCTwD4Cl1/uKcdvHEzM/k40cA/AQS1PywwLV8/Mjt9XCYen2+E++GmT/MzAdmXgB8Hyrkv8j+E9EDJAbwQ8z84zn5Vt/BbTOBnwfwMiJ6KRE9AeA1AN56y33aJCJ6DhF9kvwG8NcBvBup76/L2V4H4Cdvp4e7qNfntwL4ymyh/jwAf6gg68WQ05G/DOk9AKn/ryGiJ4nopQBeBuDfPOr+aaI05/v7AbyHmb9LXbrdd3Cb1lJlAf11JOvtt9x2fwb7/OlIlud/B+BXpN8APhnA2wH8BoCfAfD82+6r6/cPI0Hmh0j65df0+oxkkf7f8nv5ZQCvvND+/+Pcv3flQfNClf9bcv/fC+BLL6D/n48E9d8F4J3571W3/Q7uIwbv6Z4ec7ptdeCe7umebpnumcA93dNjTvdM4J7u6TGneyZwT/f0mNM9E7ine3rM6Z4J3NM9PeZ0zwTu6Z4ec7pnAvd0T485/f9lL/tomyqfLQAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "plt.imshow(x['04_match'])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 131,
   "id": "ed0a01c2",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<matplotlib.image.AxesImage at 0x7f58814c1130>"
      ]
     },
     "execution_count": 131,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQEAAAD8CAYAAAB3lxGOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAABCTklEQVR4nO29e4xl213n9/mttR/nnKrqru6+fa+vr238GA/hkcGAxaDAkEmcGcCKYkgkYv4AQ1AMEpZAmihjIEpQRiMRMoAySsLICAsTERgSw2BFngyORUJGigHDGGNjjG38uPf63r63X9VVdc7Zr/XLH3ufdvne/VunXNXlquasj1Tq6r3O3nudtdf+7V3r+3uIqpJIJDYXd94dSCQS50syAonEhpOMQCKx4SQjkEhsOMkIJBIbTjICicSGc2ZGQES+Q0Q+LiKfFJG3n9V5EonE6ZCz8BMQEQ/8JfD3gKeAPwK+V1X//IGfLJFInIqzehP4JuCTqvpXqloDvwG86YzOlUgkTkF2Rsd9AnjyyP+fAv629eFyd6Kzl+yMtomAY/xtxYn2bWJ3pAmeTsc/0AQf3d9LQK1GBQW7HVAFNc4djO1fvP/6z4wifa9ExsdNBMQYUzjynSIviad5f4xdUxFFIl9boiPe7x8bW1X7myvCuhfjdX3rgv1cjbUd54U8eu7742bfK4efuHFTVa+/sO2sjMBaROStwFsBpo9t84Z3/iejn3Oi7GTVaFvpWqa+xhmTHeDpxS7zNh9t+/zBZSZZa94sO0VlTqigQhccrY5f2KBC3Xmazo+2V00WnawhCCEyaUIQnLNvJO8DRdaOthdZhxc1b4aggqpE+9eF+I1mjenq/KXvRttK35IbbQCZBDIXaXeB2hjzoI46eJow3t4GF71RAbwL5nzLXcftxczcd38+oWvHj68qhMiYAngfEOOaZ1lHkXXmuE+Lhg98+89+dqztrP4ceBp4+ZH/v2zYdh9VfYeqvl5VX1/uTs6oG4lEYh1nZQT+CHitiLxKRArgzcB7zuhciUTiFJzJnwOq2orI24B/BXjgnar60bM4VyKROB1ntiagqu8F3ntWx08kEg+G5DGYSGw456YOfCk4CZG29dpK7DOxVWw4npR3ElxkdR5ARHAumDKhczEJUBFR3Am7vk4Z0EE9iLWf1biGqEB4OpwoGun3cfpszbWwGhPrmtFf89Owuu5fKhfCCHhRtrJ6tM2hTH0z2la6lpkb3w/6CVO61rx4k0FCsy5c1drDs5qM1r5OtL8ZjP3dGj0b4n4CQTFvchHFu4CP9C1EbvQuONouoner0EXaVYUsG5fxvCiqwTx3HTwBMf0IvAtkkZslk0DNuAQI/c2YRyTG4MSUEEPnewNp7NupI3PjrQpMy5omM44d3JoxBefUlIW9CxTGmAMUEdk1/TmQSGw4yQgkEhtOMgKJxIaTjEAiseEkI5BIbDgXQh2AeKRgLuMrm7l05NLZspE6MteRGUE+3ljJXRGIS2Wr/lnEjt+pmKv3q+Oe6tyi0fZo8JIOQURWe3Brg5u8H//ugfixu+D6flvdC47I4n9UTv7CZ+KqSWfMF+j7HntyxsY897bku5ImY9GEIrYs7O7LwkaAUWQuXhwjYH45u/NBhUa9aQSa4AmRC1r61pSDoI8qi13U+6HMI4goDjHftXKVNROmM4+9Ov5JQ43vj5dxI6/zL+gjHI3JrL2RaJrxcV1JXE073i6ilHlrjs0sb4Y+GpF8EswJH1QpEAo3Hl3pRGmDMw1kIz56o3kJTLNxORv6a+rd+C0XVHCtbSTW4Z1GDX9sLl0II6BAZdyMXhz32vEow1wCToJ5oweERZeb4b5OFB97crj44EHcMncxLV7X+Bmg5puEGy52a9zEq6eZqbVLIDjboWe1NcTyCcQmq6ppJEKI+xisjp0ZbxLbeR1/qrmOieFXEtTdH7sxHEoQMY+f+w4vdijxxDfUwb6lJCiN2A8dJ5jORCusaxK0n1PW3tY9AGlNIJHYeJIRSCQ2nGQEEokNJxmBRGLDObEREJGXi8jvicifi8hHReTHhu0/LSJPi8iHhp83PrjuJhKJB81p1IEW+Aeq+icisgP8sYi8b2j7BVX9J8c9kCLRVdWqO1k3A2ImnVwRlwDtyKvj7N9gh9x2wSGRpJXeBYpItFvhW+ZamO2dxpWL3HUnlqOc2OqAqtB1kSSpKoRO7HTFKiydkufjMt5KorOUj1wCGOoAQBk8jZkctlcPMssvxTkK15my9SxryIKtXCy7nKoz2oOLyo99/wRvXLIu9HPNyqwdi4g9sRFQ1WeAZ4bf90XkY/Spxk9wrLjzSkze6ENix9tj+62IyU0Ojcavh4jW71Dw4xMZeh+Ead6Yk3mW1VEjkLnOHLM2eILaUte6UOKCuATYucC0GL/RVIUyb9bmG7DOrcBWWZMbfd/OKzO0HHq/kmlk3PANrSFHN+oIzYTWeEHugqMGnBiSc6csu/HM1tA/zJbGzagqtJ0zpdHcd2TYttOJizqnxYzLA/ETEJFXAl8P/AHwLcDbROT7gQ/Svy3cie9/vOQgL2RlAE56o66j90FY8yZhejoGHGL6IWQuHMsXwCLqGDI4zKxzdLIIa8ZLRKPejrHjr65UbO9J1pox/6txi+HNiP/BABr5CPyahCWtOgj2+LTiTd8NgKbzZkrz1ZPcQoh7kYrE6zFE50Jkv2MhItvAu4EfV9V7wC8CrwFeR/+m8HPGfm8VkQ+KyAerO8vTdiORSJyQUxkBEcnpDcCvqepvAajqDVXtVDUAv0RfkuxFfFHdgSup7kAicV6cRh0Q4JeBj6nqzx/Z/viRj3038JGTdy+RSJw1p1kT+Bbg+4A/E5EPDdt+EvheEXkd/Z99nwF++BTnSCQSZ8xp1IF/zXjAZ6o1kEg8RFyIKEKhzxI7RlBZm2balspctL3XhIOp+xa+IxgFJKH3Q4jtm2kwNWcnysQ35qrtTlatWd0PNG5cubDG8iit+mhcvXd2RmCA7cLODr2VV1wuxhd7C9dyKVtGj91EFJkqZL0vgIETpYyECk9cw7wb969o1LPwOfN2vL1qM5bYqQ4qn0WKoQp166kjEqEqpkToRKOFWrvBz8DiocgnYLG6cGP4IVzX0n3r4KNSWybBnDDQa/FbPp7S3IpNzyXQqDOdoLI2DAYo7tBj9k068+oFdZS+NR1HYPAlMKZzPUhZlpTWn8PKd96f/9C4kRaSs+hySuO75S6eR8GLRqsSl86WFx29k5E5rqE3Utv5eBXsVh0Lo8I19BKgVYV61W7nYZBo3QDvAmXE76Q7bz+BsyamSXtRrKE5qX/AcY593P0fRk47brC+UMdZFXWB9TkgTnXsY2R8OqvzxjhJ0ZH7xz7xnolE4q8FyQgkEhtOMgKJxIaTjEAiseE8FAuD6zAXTR7A+lCsymwi8bDwUKsDToIZOpoNdQeqMC7bVCHDiV2dd+rqeNpv6ejWvCxZ8qVDqUJG4calsnUr2E5sHwMYpDCjvcNOmw29hNeoM6XVSjLmLiCRnAHW8YNKL6XV49dkVXHYSs09y2qmEf+J3HXm9waYuTra7iXgjOT+TvoK2NZ8yV3HnWpmhqhXbRaNBuy6eOVh5+ybNZNgZlGGVS6EWBbmC+4nELTX9Mdw4sxEDJ3r8/pbencfauwjobGFqfP357bloKBCh6OKJEOpQ2YmRFlE4s4BXMhoDWcggOCdmRyj75+L6uVeFCJ6exfsEO3DqmCnHNfSvQSuTw64sdgZba/bnEWTm3r7YVb0Y2uE3C7bjEe3DkbbHMrLZnfZyoy+0fuF3Gln430LGQeGfwP0Y9qqM8OF2+C4c2d7fGcFuVWguTEXBbQM1NX4uOxPSrYmtekLUPqOWW4/1Ao/PiaQ1gQSiY0nGYFEYsNJRiCR2HCSEUgkNpxkBBKJDedCqAMcowS4RVAXjZaLcZz9ThoIs+pXNAlqLERa4+192fS4Dbe+3/2U3cbhV2qKmRFYJV7ldk0ocxccnVk5WPqEnFbq7MYO14U15eTFRdvXVbFe9c+SAIMK2hnnVsHXYqdAdaDZkI59hLb1tBF5MQzjeZL76NRGQEQ+A+wDHdCq6utF5Crwz4FX0mcX+p5YxmEFU7N2Q0juKAG812hV4k4jOe6HQveWLuwJa2PbrVDhTvtaCjGJMZ5m3UdTpsdCqFeYoaeu7Ss6GwOzCq82b5bGm1FrmQtcyhY8zeXxfTvPos6pjNLkC5ezrHNTT6/nOZ2KaR4nvuVaeTja5kS5lC04bMvxc3c5dfCmpp5JiOa3aDuHHGTj802F6fNCOzUMq4dmW7DKEtRNPx7eyDfQldKXsz9BNOGDehP491T15pH/vx14v6r+jIi8ffj/P7R2FpQiEit90pBch9Kot5OODDdZ7PhN5EZr1Zl+ANEnEkdz/9uac73m8tRrzj0J484lE+8Hh5zxCeWHpCKlpTkXrTkuqsKN6hLzZlxvr4eY+mDs30nvUKNG3L3LAnVtj8uT9y5zOBs/t5fAo1Nv5jLYyZfRhCUB4V4zoTbcK1TF9gNAaXYcXWmUgxcIkwATo+7AtGE2qU3jm/sQfbAcNOOGD85uTeBNwLuG398FfNcZnSeRSJySB2EEFPhdEfljEXnrsO2xoUIRwLPAYy/c6YvqDtxNdQcSifPiQfw58K2q+rSIPAq8T0T+4mijqqqMvMOo6juAdwBc+beuP5wpeBKJvwac+k1AVZ8e/n0O+G36YiM3VvUHhn+fO+15EonE2XDaCkRbQ0ViRGQL+Pv0xUbeA7xl+NhbgN85zXkSicTZcdo/Bx4DfrsvRkQG/K+q+n+KyB8BvykiPwR8Fvie2EFiBUljevRx5JCopBNcX0TS2DeTEJXpmkjG3lWkWSybcIwuONpYyvHgWBrqgA7feV0mY2esJHvfkrlgRsvlPlIRGcdBU9KsKbxpRPOi2isDlhYvDjpDXgQ4mE/IDRnNu8AsqynL+Wj71DfMXG2Gj7fBkUlHa1QlDiqQGeqCCu1E0cxQBxxoprhiXHooypYyb6Pl5mMFTS0VC05pBFT1r4CvG9l+C3jDl3Isu7qvXYs+Fj8Ng1QWkep6Ld4+xrpw36BiOq6sfARiN+Kizc2+zZvcLM/d56DPzJrzq/OaocSZUgy+AmNsZRWPTfbNvmUucGhIgEGFZw93zFBggCJvzWN3XTzVOUDb2NO2WeTsZ+NymHNK4TsKI3+/k0AutoGrQk4dMvO7BRXwdoKbUCquNqTPFlzraXPLD6CvK2DnWYjXiVg09ly+IB6DNqfJ4NOtccg5TmrquKFxUZ0/5mMAfWy8aQSqgjK3fScmKqZX3coIFIYRmPqGS9nSTL4x8zW+COYTsfQtn7r3yGhbi2Ne55SZUVfAByZ5a+bnb7s+Xt/0ygtC6IL91HOxJ6LSBWdq5mFw8LLoVKi6zOx7CNIL/uOnBoVsbrzhtCABQj5+/ioPVGVmFifJh1L0ppfneK+AFDuQSGw8yQgkEhtOMgKJxIaTjEAiseEkI5BIbDgXRh1YV348uq9Zmjy+Op+59aGXVoShQwmiZr+b4Dmsi2hM/rLJzJXsurKlqNX+FiJK7gITI6335XzBo8U9Wx1wNcTVUZ6a746fu/PM5yXlpXEtvvAdVydzM7t0EzzzJje/e9Vk0bTdVtVfGMa8zQg6HW0/cCWlj2vxsb6F4DATBqggnVDsjTf7pZIf0jtCjLDwOYtZQWEoRltF3ed5MPpu+W3ABTECqnEpcK+ZRPeP3chtsGW8OnhTRgMofGs65PT7Z9yrxvtWdZ6qsSVAGDRxY9KGYLdBn6bdWWrUcM6lkdZ7v5lwkE36m32EXT9nxy3xhjy64xb8rctPj7ZVIaNTx9zQpevO86nb12gNh5+2sct3A33qbkuLB3zWmTH3IkoXhL16/JqFwUnJ2r/IWhZVYfavOixwVj4BID8QrAz3ohAysEom+LljeVDQlOPjVmQdEnEY6iJjeiGMwLrMQrHsPWBr+bGCCzDk1l/zmWjij2AX+egibTDIxmdYxSjmKdmooxt+LLwEnPFY8yg7fjzyM5ecnXxpOqd0wVHX9tM8NA7tXH9XGDgJWP5EInaZ7tUuseIgsWvSio/mOqCT/ia2SgvYzxtUeq9B64VYFAhinrsLYo4JxOdaWhNIJDacZAQSiQ0nGYFEYsNJRiCR2HCSEUgkNpwLoQ4ocQXAknSazqPALDf08GLRhwsbGulBU0T9ExzKoVGltg2ORZNTGWGtbeiz5por1dJLo+aqbWR13Drm0XYFM9y3DY6pb9jNF6Ptj+keM6lMifC6P+Rbtz5unv9vTG7wK0/9O6Ntd+dTuqdmuMYIU64EdWo+nroCuiuNuYo+vVqZqtBq3JaL8XHpFh5aZ+YEqCYdYenByoR84Mn3xjsuCsW9QQEYQQuhm9pBiK4W5NATmvEDHOalKW1CfM6c2AiIyFfS1xZY8WrgvwZ2gf8ceH7Y/pOq+t7YsbwoM8OxpVU7eYYTpWrt0M69ehotc33/OIamk7mOndxOgjrNcm7q1ni/a0dT285AGtZLhK3EnZ1iF10jufkB03cCYMtVLDXHGxLhk+0u94Ltu3G73TZrHszKmsPLLZ0xmaV2+IVgRXDnBwLOnrYHOou/34ra8mIecLPWHNeybGjKzPQTaCYZVW54WWmfE8DKJyAKriHyvUEzRzsbn6vhUnyOW0lc4BRGQFU/DrwOQEQ88DR9jsEfBH5BVf/JSY/9IDlNPoKz5EH4CJjZd0QJGo8hPyvWVfC5z2m+vq7ZP/bFj3He47xpnfj4dqqDc+NBrQm8AfiUqn72AR0vkUh8mXhQRuDNwK8f+f/bROTDIvJOEbnygM6RSCTOgFMbAREpgP8I+N+GTb8IvIb+T4VngJ8z9rtffGSZio8kEufGg3gT+E7gT1T1BoCq3lDVTlUD8Ev0dQhehKq+Q1Vfr6qvn+zGA4QSicTZ8SAkwu/lyJ8CIvL4kRJk301fh+DEOOwMqxedtb1es4AVW/jr2042LusqIq8wA4wkRBcAu3WrY7FmGVb91i2gmXU/14yLSlx+jXWN1aJg5LrEgngij1wdcpSa8Wx65MdoPimnMgJDwZG/B/zwkc0/KyKvG/r1mRe0jR8HZerHJcKgwtLbEmHT2X4ASyMl9/3zDunMY2W2rX71FY8rM5R4QU6oPdoas6Jx4NSedXmIpN7uQ16DkdF3tZsVagzY5d6B2SARWjf68+0l5mFcawe43W5RGDGzlydL5lcK6tqoStx4QihxleFHMAdRZ95s0kncBvjBz2Ds2LOO3UtzMiMl+SRro3JzveW5U8zGz6vQlCXd4fj3lg7yew43XlWdbA4hF9OQdJ0QIi/2MTXqtHUHDoFrL9j2fV/qcfp86pYJdEwMzXlVIMMqrNCt8xFYhdtGUnffqsb9AAD265J7y/H01XWd9dqsNfZOkTL0hmCEctqQGTc59AVAzLTcw/Zg3AxdcMzbgrvNeHKNzzdXeKq+ar4tfPLwOkujJkNQoek83niklb7lFVfusDByHSzbjBvhMu3SyDewyAlZxHgKdNvj51anyKxlMhs3AkXeknk70Uzd9WXu7Zh9Z/oYqArdpDVzjhD6N4WQG9e0ELqJosYdGxofjVV2xjyD5DacSGw8yQgkEhtOMgKJxIaTjEAiseEkI5BIbDgXIpR4HbGy5ZkLNNYyOOtTc8cqBwOm/BhW6auNdjMZ5f2T0ysExqqt94HckKoAMh/MDLISWcGGvu9t8GZK9qXmLLqcKoyv4N+rJ2YmY+jTW+8U1Whb4TqKrI2OucuDnYg002hCTgC1shE7JSs6U3WJKQPA2ojUoJgZf0W0zyZulS4PguZKyAx1IO/lTbVW+SM+BOu4EEZAwCyTjYRoZeCYM9G6EGIdnGbMysBtYfoBKHBYFbStYQRU+tTY1oTMoJg0pqR0ebYwS5NDLxEe1ONavapQtz7qJ1AHz347Lm8+U+/y6cNrZoXeJ+/smsYP+gk/2TVCibOaR8sDQmnXa2g6z2E1/t3uNjvQRQy7Cn7H8O1wgd1Lc7M0+SoPgWX410V+eqfMyvFzA0zLmmVtSKvBUeU5bWaUmy/7PmlmzKchXbpZMyESdn4hjIBDmfrxHPgAZWTwcwlkRu2ATDrmbWEX+BgmnMWtdhZ9MmyVtZnAouk8bevNOG5VoSzsJ+Jx6s23VonsIVmJN8ZlkrXRegt3myl1yMybIfOBIjLZi6w1+77fTHhKHbNs/Hrv5Eteur3HfDJuBDIfWBqJXACaxkfzLFhJYKA37IXvzDewMrNLxa/YycffgKA3gJ/bH4+nq9qMps7ojDcFLfrxtN5yJA946y2DeO6JtCaQSGw4yQgkEhtOMgKJxIaTjEAiseEkI5BIbDgXQh0QUUqrXCuYqa8BytCaEqIXvR9pONre5fcjw8Y4WJZsT8ZXe50o20Vtli5vQ0ftfTTSr8xtdcC7QBsJha47T2tp6cM5Y5F8lqIC/Qp+G+yCpZnv2C7tVfCdwg6xnjc5iybnkfEARnaLBS+Z3KPVceXj+uSAO9V4uC7AXj0xIztVharJ8G78ezlRXNaSGfMpX+NHAPDS2XjtcYfy0vIucyOF/X5Tsrc/pfOGPOm1z4NgSIQuD1EZMBZFeDGMABq90WO4mAHJlmRiS21VaKg6u3z4oRSUhlzkXeBKOaf04xe16TxVZh+7CY5Z3pgTbqdYcku3TCOyvyzNuHcHTPOWS+V42rbtvKJwHa1xky+7bJjsRt/K2nQGciiTrOH5+XgI9rwqCCpMjVoRANdyI6ie/oFwJ7eNwO1mi8+7y6NtdfDsMaEwnIW8C+SuY9uQ+a6Vfb+sPAuLLjfD2gE+vXiE/WbcQC3bDOcDWTnet5AHnFO80feyaM35APHcEscyAiLyTuA/BJ5T1a8dtl2lrzvwSvrkId+jqndERID/AXgjMAd+QFX/JHZ8RaJlsmN6eYddAtyJkruOLuZnEHki5hHN2EsgG37GP9DXTMB6Cxn6ZvkZ7OTV/boJYyi9c8rosV1gmjdMjIQohetwEnCxctViO2GVvjVrNbjB6FqOWqt4/GgpesQ8fmyeQG+EzGvmAnXh7RQPw5uj5UNxKVvSqP3m2KrjTm284tC/Yd1bjr8hrUqLW09zcZDnnan3T4vGfPNbx3HXBH4F+I4XbHs78H5VfS3w/uH/0OccfO3w81b6xKOJROKCciwjoKq/D9x+weY3Ae8afn8X8F1Htv+q9nwA2BWRxx9AXxOJxBlwGnXgsSMJRZ8FHht+fwJ48sjnnhq2JRKJC8gDkQhV9UuOYTpad2B+x15pTiQSZ8tpjMCN1Wv+8O9zw/angZcf+dzLhm1fxNG6A7Mr4yumiUTi7DmNRPge4C3Azwz//s6R7W8Tkd8A/jawd+TPBhNrxbXDURkhrX0YsDP9BJwoU2dHJ+JhUeZmefKqy7hcjJfvdqJsZbWdmXaI1bejFLP7Ut0Yj5d7PL/cHm0LKoTgmBhRbWXW8th030yXXrqWRh11pO+WsgC9xBhb3V92OU1rZAseIist9WCl5FjXZJ06UPqWq+W4xBjUMfGNmSm5CZ5ZVnO1mI+2v3Jyk3kozDwLrXo+cu/x0SzPqsKdZy8hE0PW9UpRNpTl+DXNfcdW0ZjKx05emWMGdng0HF8i/HXg7wKPiMhTwH9Df/P/poj8EPBZ4HuGj7+XXh78JL1E+IPrjq8IXeSlxJZkPE3wpsyX0THztkPOjl/ihsQiYxSuNZ2BVv2yfBRK1zLxjRmTX3d+kOrGj3+3nTHxjdm36zsHXCnHJ2vhOy5FSqoHBuNp/AU38S2566Il22Msupzb5biWL6JUTWbWhHhmcRkvatYteLzYY+IiMfuhITNSb68eGFY+gTY4drKKrWz8z9NcOu40Wxx042+uH997lIWRL0AVpAhkuVErwilbk5prs3ED9sjkkKlvTN+Ow7agjvgoxDjWXqr6vUbTG0Y+q8CPnqg3Z4TliOQkRPXwXELUusb07P68GtHT40sozfAmMfa5oELmguljEOvTcXAS1n6vGPkwrmOsK/vdeyrG/BcCLvI24CPnjiSgGo69vtpV7ydgvMWsSWLTF5uxx0UGP4UxStcbZrtwQU9svprd+pL3SCQSf61IRiCR2HCSEUgkNpxkBBKJDScZgURiw7kQocTrsGLLm+CHSD1jR9dHCc4MX4HHsj2zDXoJ8bl6x+zTvWZiyklT35BLR2P0vQ4Z95qJKQHeWO6wbRzbifKS6b4powF4gqlnVyGL1lvY9nUvjxoDW7p43YCQCbcm46HE3k1oO29m/b3RbTPLai4bEufl2QLsBNHmeMOQzlyd6T8R1HEpW0TnxI1qhwMjHPjpm7tmqC/A1s7SXP0XUS5Plnzlzo3R9n976ylqzbjZjM/HD7dPmPIhxJWLC2EEVDEdgsCWvHLXUbWefaPE9rwtuJlvmQ45z5U7PLkYTwEdVHjm8FI0JNa7wGOzg9H2K+WcR8t9ZjI+oS5nC7Z8ZU7arbY207A7UWauNn0UVpLoXmuHtd5rSzNl+bwt2M4r0wlrN19EjUAdMj5/cGn8vIcTqnslUhiJO8qWO9OZWRjlZrPDzNtu5hPpje8YzvW5J/bb8XDeRZeTu45rMq7VP5Hf5jWzm9wz9n/q8q6Z6AWGNPP5+DUTUUrfmv4yh6HkoJtwqxk3rnerKfNmPLcFEJddzZZE4gJyEh08EScZgURiw0lGIPFQcVpvyMSLSUYg8VCR/hx48CQjkEhsOBdCHTgtZhhycLTB2VWL6dutgJC6zdYEnbhIyGv8ibWqpuw1Htxk7i/rMzTHy2zbfe+jDIWTPiM6FbNseggCQcwUNKpDqPQZPvHXXRsLP2TFjqWJt743rK9qvO56depM9WB1bOteiIV+XwgjEBAWRox3LGLNoQR17Dfjks1z+9t4t2WmmL5bTXnq7u5o5WBVYXFzBrlVMh3yaWPG9BeuJRfbR+GRfJ95KEwDdLvdiurVM1/hIxl/G/Vm7H3wwu16xrIdH/Pbixl14U1Ne10G53lbsLc/Hkrc3SvI7nq67fG+tSocVKV5wzy5vBJNSX45W5iy62o8rHwC9+pJ73th5Li57vd5RXGTPT8u0z2+9YhZE0FVOKwLM4zZu0AmnSmN3m63uNVscbMazzFxZzldW3HZ4kIYAVUxv/y6YtAHTclBPa6PLqu8j1+30jgP4ZuMPHVEFL/TmKGvIkpRtsxyq8R2xWP5Pa5m434EL89v8Xx7iaWOT8h5KLicjecLANj1c2634xOiUc9eOzNvhlw6dvKl+eRZdln/1DE076cOd6Ml3Q/rgq4y2hVCqWg5fk2KaUMXhP1q/Jr+6c0naDpnGok2OHan445Gue/YySvuVoZfSdNfi22jbPonysd4qr5m5hM4bMq4U47v7CdycOzVU7M4yef8FW4tZhwYhVX292yfEABnFC2BtCaQSGw8a42AiLxTRJ4TkY8c2fbfi8hfiMiHReS3RWR32P5KEVmIyIeGn392hn1PJBIPgOO8CfwKLy488j7ga1X1bwF/CfzEkbZPqerrhp8feTDdTCQSZ8VaIzBWeERVf1dVV3+uf4A+o3AikXgIeRBrAv8Z8C+P/P9VIvJvROT/EZG/Y+10tO7A8q6dFDORSJwtp1IHROSn6Bfwf23Y9AzwClW9JSLfCPwLEfkaVb33wn1V9R3AOwAe+apH9KS6cKvOjIbrOodg67P1kBbbUgB81kXUgV7WsSSfwrWUrmHLjUe87bolc1fafgKoGQ0HfbScRdA+Tbu1+u9EySWYUYiF7zhs7NX/qs2oImXTF3Xe+wKMoUOZ7Wz8e2dZh0YKmi7rnKrKwfINWXr06nhb5gJuW81Mx03rWbY5B8YK/b0wZR4K5mG8vTYUrhVxPwCh6bypuhzUwt58Sl2N910X2ZDI1Dg+9lw6sREQkR+gr1T8hiHDMKpaAdXw+x+LyKeAvwl88KTn6YbaAmMEFaouozJy3Ie6z3EvRs33QykpCluEvLy9YHlC7TWoo5CWHTdet+C6a5m7uSkR5pF4/hXWZJyHglvNlnmTT30TdUYqXMutdmbeiHf2ZzQLO7U2C4+rxveVDkLeG9ExVlV3zXLyVU53rzAHP9vzHGCkO8/7isnLarzvXdvnOWiM751LYK+ZmGnkD6qSwvAbgd64WgZIVVjUOVU93t62nu5egbTj45IfOLoiYgSmD9hZSES+A/gvgX9XVedHtl8HbqtqJyKvpq9M/FfHOaZV4jsTqMx7ob9Y5tdzCq2ddKRtPXluP+0L35l55EMQ2tazX4/rthPfcLebsePG/9TZz+5R46kjSTD2w7gTlEdZas7NZtxPoAoZ+82E2o9PyCpk1CG7n9b8hbTBs6hz0wg0ixzujU8dUSHfF6QbvyoSoJsqTWkkW6kztqYVE8O3Y5K33MU2wK0UuMLK7d8/7dvafmgsW+G2YYA+IdeHh5JhoFofLQ/ustYuuhKEusloDCMQao+0gjTmox7RL7EW4MBaI2AUHvkJer+q90lv0j8wKAHfBvy3ItL03eJHVPWF1YwTicQFYq0RMAqP/LLx2XcD7z5tpxKJxJeP5DGYSGw4yQgkEhtOMgKJxIZzIaIInaiZWTeoM1djG74Qlz+GiKIKasW21x6d2NLJNG+4czgendV1jmaZcc+I6ipcx512y1YHQs4y5KZECHDQjasDAMuQc7seD2mtQsZBW7I0qtRmrpfKrMjNOvRSmRVFyGFGvmdIgEEo75jdBqAJQlcaocRNRr69MP0vHp3tU2StOSduuS1TfgRo6oywMJSN2gGepaEePNP4aEpxVaE02kWUTOx8A03nqauMsDTUosbhqrjqgq0QRrkQRqBwLS+f2CJCE0lHfrWYc2Uynt76xmyHe0s7Nr3pPNOiiVSxFRYH4ze5Ng6/lzGfjbeHWe8fcLMdzxP/oeUr+pj/yMvYvmEEggq36y2eOtwdba+63jhNi3GHolUOBEuumjc5IdjhujrtaC4Zk1EV9YKzpCztJcIwHZfSZpOaR7cOmBnhvF+1/SxfMbPnyt0rMw67cf+JoMJeNeX57XHjuaxzmjrDGfJknne2YQS6Nv5iXWYtUyPleO4DTZlRGUZCgxCySFVnFUKOWfUYb4uHF8IIODSaQINIWyCSi2CY5NZknje5+cSBftKodWFbh6tlNCEJDG8oqJnY43a3hUfpYqXPI1liqpBRGU/6ZZtRtxmZNZkHLdtyimnWeFK6oiMYb1CqQqsOw1ESCRAKBaPuQJF1zLKaLePNcOarqCfl1DdmvH9QYeIbM2vRQV4wzwrzoZD5wLLJ7FwGjbfHbChTbyVqgd5bsvHj17TzCl5Ro+/aEfUYxKV8AolEwiAZgURiw0lGIJHYcJIRSCQ2nGQEEokN50KoAxNpeG3xrNl+ydDaV6W/787GQ0efa3f4XP0IS6NE9zPLy9yqtszV4luLGc6IlvOVMHleOHz5eHvuO2a+MktJP7l/hZ18aYb7PlHeZWFJXQh36yk3D8alrrr2NPOC1kjrrTMhaF9XYYzFvCQvWpyxonztygGMF3MG+og4M+X4oMFvXx4PsX780j2+Ynaby368/bXlDV7i98xzX/cL9o3r3SHc6rZ4srk22n672+Lp6oqZ/v6wLfnc/hVTVamWOe5+BusXM8kado1+B4TMBW4b+y6kpA0Chp9AcIIWwVQHrMhKuCBGIJOOl2T7o20eZWKVmqYPVZzI+I00cxW7fk6j41/zb0wm7Hd2qub9bsJvWzdKnbO/u8VLrr0oXwoAV8vDqH9D6Vv+cu9RaiOJxL/a+6qoJh1qT/b5cSPhl8J0H6orRl2BS1uELXtS4JSd7YUpMX7dI5+nNaRPGPwUdsZ9HKouw0vg0en49X7Z5C6P5AdmWfRnm8u4SJ4Fa78VRUReXOWtyI1jTH3DNGtwlhNW3tEY18wJPL/YjqYkrzpvKnx50RI6IRiSteJ7A2BFGkd8GC6EERAwC2kcB7MijAa8BIIxaRyBXOya8F4CmVkswoOzvRW96NoqOhqJTQ+dQw2rD73ziDWfJfTJO8TK7hO0t57W4fVoTYYX4yTgYvXuJTYugcwFs6hMv2+IzodgXK+VcbCS0DwoYrUoLMKqslJk3NZVKOrPYey7dk+btCaQSGw4J6078NMi8vSR+gJvPNL2EyLySRH5uIh8+1l1PJFIPBhOWncA4BeO1Bd4L4CIfDXwZuBrhn3+ZxGJZ19MJBLnyonqDkR4E/Abqlqp6qeBTwLfdIr+JRKJM+Y0awJvG8qQvVNEVoLRE8CTRz7z1LDtRRytO3DndnxF96zxhNGfdSvN8IUF2Rf+HIfYItGp0DU/p8QPC39jP7B+hf6ssBYME3FOqg78IvCP6KfUPwJ+jr4IybE5Wnfg676u0OuGHBXLJ+wROpRSxyXCHWl5iZ9Hp0YeuQ8LETO6ca+d8YdXXslj03GJ8FK2NKsCA2z5mht3d8zU3dt/VmLI3QAED7ufMjI0Lzomz1fMXzou080fcSxektOV4xahvRTYLmtKI332t1z6BIfBjtSbhzJqCGau5pKRin3Xz7nVbZvH/1x1jUaz+PHFCGEciFWCttKJQ1+SvcxapBsftzzrzBoYALcPx30njkOedYRS6Iz0+m0ndq0HgOYBS4SqemP1u4j8EvB/DP99Gnj5kY++bNgWpVLhE42RvANnpt5e6f/WRb/kltR482bcD1M+UT1mSkqfnD9KZYQpB3VkruP55Xja7xt6qQ+JNeLirxf7vObRm8ybca3/s3oN2Y9MyH3H4hFD2qyErpxSXTYKdEyFrlS6ifFasN1wqVwy8eP5CHJpeTSzb7SJNGZxlF7+C6bvRq2eZcipDAu46HKWWWa+0SxDzhLLWcixDDl32nEnq3lXUHWZKe12KmTS4YzY/Ee2D83U+SJ6P5mLRRM8i2a871Wb0Ub8RnQihMiNrka9AjjhnwMi8viR/343sFIO3gO8WURKEXkVfd2BPzzJORKJxJeHk9Yd+Lsi8jp6e/wZ4IcBVPWjIvKbwJ/Tlyf7UVWNuKYlEonz5oHWHRg+/4+Bf3yaTiUSiS8faTk1kdhwkhFIJDacCxFAFFRM2aZTZ8pFjWZ0KmZ22AkNjXpzJXoZcu40W2YA0a1qFi3v7URNSakNjix4psZqsBPtk14a7VnZ0Vrpp7WvzG1VwpYMutxuV0fUoUFcnx47lhQzNyI3V22WOhBLEgpEC7SuCOqiEmHsGI16M/lrUCEgdGaC134/69y566JjVrh2bXBTJUY6dFFE7AAiRO1Mw/0HzJYLYQRqzcwY704dT9VXR9sOupJGPY8X4/Hlj+d3mIeSuWFEnq52+cDzrzTDO288s8uV6+Mhr0XW8bKdu9xejGu/+8uSMm95yfb4/o9P9njN9k0qw4hcKpZ85NnHR9tUhaqdsTT67Vqhviy2EfDQTZQwHb8ht7ZqZllNaVQ1bjQjZz7a5iVw3R+yYxiJXPoAxucNW3BLt7ndbTE3Mgbfbrb6KEQjMnTmarNke1DHfjcx8wVUIY/WsQiiXImUsr8+OTDzQwCUrjWvd1DH3WZqPhQ6FbwLOMPIOBeoyU1fMKveAVwQI5BJ4Ko/GG1rNOOmG0/M0ajnsCnNEt3zUHCr3jYv+lOHu+xH6hLg9H7a8hfRwp1qZhYfWS77WvPW4DuUZZeZT6VbhzMzn4Aq6E5LXdhvCn0hDRuddUhp5GlwIVq85GOLl3Iju2we+7Kfm28KXrS/boZh3mtnfHrxCIft+I381MEue9OJeaNWIWNhGAHotXjrRs1cxyuKfSZu/C3msp/T4cyn+TwUUQexRj2HhnFrgudeMzH9RpZNFnX2LLIOVbHnciz0O3LcRCKxASQjkEhsOMkIJBIbTjICicSGk4xAIrHhXAh1wBHYMipYNtpRGqu181DQqZgrrouu4NnlDktDHbi9mFHX9hCIU4KhDrT0BU2bxigg2Xo6YG4syt7Mt6KRYYfz8e+0Ip+0dLmtSWsbSVQaBCk7fDa+vxft++bG+/Z8RHFxoux5O4Mz9Cvh1ip6FTKeX26zaMePf3cx6aUyQx2YZbVZoHYVHZgb6bdz6biaHXLZH462P5HfYal5pMjsdjR79V43NX0QWnVUbWamM287j6rYfisu4H0w1YEuUnj3QhiBDs/dbjy8s0PMCdOpow2ePSM//7wtePreJTO//sHdKVS2pCONcGg57AjsZwpWCe4g4JXKuBFvsUVTZwSjXQ8z3HZj+nhsbS9ZLuwS3KFxSGX4EVSCOk+XjU+ou4c5B4cTM3vus1s7lEaJbfhC6fMYscy6tw5nNI1hJPYmVFVu9q3pvHmjQT+c8+n4uG1nFdu+ijpCNZqZzki32227nDzCQVuy34y318FTdXbFYyeKdwFv1IIosxbv1N4/Vg3ZbPky0qjn8814NYsO4cAY2Eb9UJp8fLIv2pyqyalr40auPP7QmbHpfiFoZvzFJBAyxZKF1YFOOlOfDUF6A2D4EUgrqOXgIf1N1MyNrCONI7/jyQ4Nb8RF3z8rf0a77Wh2nPnH4t3ak0WKWcQKl4hon47dGBelL34SjPh3WTiaMjONwGGdm29vYXiSWnr7YVaQuY47xbgDWKMZ+93EfCh9vrpMG7yZj6AJnrnh/9Cq68fGuFnzrLtvCMbIXECxs1XFnIXSmkAiseEkI5BIbDgnrTvwz4/UHPiMiHxo2P5KEVkcaftnZ9j3RCLxADjOmsCvAP8j8KurDar6n65+F5GfA45G8HxKVV/3gPqXSCTOmONkFvp9EXnlWJuICPA9wL//gPuVSCS+TJxWHfg7wA1V/cSRba8SkX8D3AP+K1X9f9cdZBlyPrF49MSdsPwADuqCxbwgGOqA3/eUd8RUB8q78ST9IXdUu+Nt3UxpSnuFX4OgrTNLTftK7KrEooQguD2jbPpSuPRpKO+Or+AX9zoQoZuMn3t52bO85k3lo7ri7EzFAs0kgOXD4EB8MFUTVZB5BoY6kO8Ljc8JhvpwUEzsMVdBgUNDWnVOubuYsFOOZ4h+dusS87Yw1ajbi5m5eg+9/0Ws3YlSGHp+4TvTRwD6SFwRf6yipi/a90ve44v5XuDXj/z/GeAVqnpLRL4R+Bci8jWq+qLk/CLyVuCtALPHtrlZjYcDr+N2NePWfNzH4O69GWE/R4wJ5RpbJgOoLwvZeNg8KLhG8bUVhiw0Ci4fv6jXdg/oLjlTujm8XHJlZqf1vjRZ8umrhnS69MwPMzoj1Lid9rKoVdeg2RY0s6NP/VLs7w2EQ6HdMsKgc0Uz24chq4TJ84I3vvrWs4Fm6kz/iWZ7GyOyHBVot9T83m2m3N6ecMfIs3BrZ0YecboBUCOBzYo8M8K3RZlkrXn83PVGwKxirRJNaR5zPTuxERCRDPiPgW9cbVPVCqiG3/9YRD4F/E3ggy/c/2jxkatfdV3XlfEeI6j0DkPGEzN0gqwpyhBLZBMy20jcT5BjGedhuxgP89J34DvzqRKCY5qPe0rCMCkMrb4LQijVfNK3TV++3LoZusLOSvSFDtpN0gkSxgdGhypIVmIg6cBX4JdGgY+DDonk3+/bjBvFg2aCddFUhdA6tDEckRrfZ/gxzh17ykM/X60ndRjandG3WLl3wEyMsyJWNv00EuF/APyFqj71hRPJ9VUBUhF5NX3dgb86xTkSicQZcxyJ8NeB/w/4ShF5SkR+aGh6M1/8pwDAtwEfHiTD/x34EVU9bjHTRCJxDpy07gCq+gMj294NvPv03UokEl8uksdgIrHhJCOQSGw4FyKKMKiwNOLHA0JlhAIHhOf2t9m/Z8Rw383JIlGC0kG7Za/odluB8rnxc7sW5K6Yq9yuBrSPqBvjK3dv8NJyPFX6iljm2kWXm6vF86bg6cku+/vjY+oPfB+laDwCQhHwCzFXwbNDwajY3qe/b1er8CNoH0GZHRhS1l1h91MN+T0jI/AffYxQ26oJgPva146fusy59+ot6h0j0q4Uqqu+l1BHqJeedrc2w3KvXj5kUdv15OtIxmChVxdmxjWd+AYndvbrZiiJbs0Jq1oyXBAjAJjhl0GFe/W4ylm3nqb1FJPxSaGPtYTOEl16hx0r5BWgzDqaHWOIFBatwxlOMc4p1y8f8ujWeCr1a/mhmdoaViW8I85KGTQ740Zi0RXM8prq0fG+V21G3dmOJUHh7t6W6XTT3S4wQ+61N4ymM5FXpBHEDKHGll0BKQqcj+SA8J5uYjxQCk87FZbXjFDfHaW+1oGRZ0HKjq2tJZmh5T8yO6Qq7VuqajOm2fg1F1EuFUt2jJLvO/mSoGLWLSgicvM6LowROCmqYldlQXt9NBK7vg7r2HqMnddpu2fJuvM6UVPqd/RjeqKeixKrdnMCd5AHhz1Rjnwmtvv6MXWo+UA7DucxX9KaQCKx4SQjkEhsOMkIJBIbTjICicSG81AvDK4LmxQBIgEf4obFHmMxZrX/+L6CeLUTarqADAtFYzyIBSC7bHqfktuShbohKaWY4bzSj5vxiNBYiWxWpc/j3+9UX99IhX5szAmx+vd01yZ2za3FxXWLyJ5AIB7VFdvfii6EC2IEVO2MwV1wHFbj8d9VlaNB2NlejLY/vrPPdl6ZA9AGZ+YiAKi6jGuT8Rz0mQQeKQ/IZVwuylxg4hqzvXRNXAKkr4JrseUqsx5Do55XT2+y7ZfmvrVmZgnvO+0WfzB5JZVRlfhzenWtcqBGynACSJXZvhuBPpuy4WcgO9tIzALlGc0lIxV74Wi2heUjhnG81nD1kX3z4aIqXN2ak7vxa/r4dM+seQDQqGM7G3ewcCiXsgXbRgz1zFdUITevWS6BRu2KyRfeCFSd5zO3ro62qQohEgrss2CmmL6znHJolHqGY8polpYuvWbrvGHZVVmGnLmOn7/ReP4ETzCDwJ3YxVpWLINdJGPuCuZdaWrO99re+SoznGLKaUMTKdrSNc4ONQ4CDrrp+LjVu8Leq3KcUdRlcv0VNFN7PjRbQm1VTReorgb0JeNjd2l7yfWtw0i4r7CTL81x8aJ4b9csKIFdI0FF7jquZIdMZNywT1zDUnLzodLljkWX0xl/4deRxBlpTSCR2HCSEUgkNpxkBBKJDec4SUVeLiK/JyJ/LiIfFZEfG7ZfFZH3icgnhn+vDNtFRP6piHxSRD4sIt9w1l8ikUicnOO8CbTAP1DVrwa+GfhREflq4O3A+1X1tcD7h/8DfCd9WrHX0icS/cUH3utEIvHAOE5moWfoswijqvsi8jHgCeBNwN8dPvYu4P8G/uGw/VdVVYEPiMiuiDw+HGf8HEGiJcJjFVVdJMPqKrzSWkuOFXhctVvEJJejn7HCgRddjo8mf1Qa9bgRrb8bjmnLQf12K5ClCjmN2uXBGyvGeMD7QGuN22pcrPEZ4rnMMOZcaaeCy62+QzMTO9vwVp9ReBQH3SxQGuHd06Jh4ttoRGvhO9sPYI1w6iSY8mIu3f0fq70TF22vJMMx3t5GfAy+JIlwKELy9cAfAI8dubGfBR4bfn8CePLIbk8N20wjQOcId8b1MHWKbo/LJj7vyLx9E1dNRhcEZ0yYzHfRFNJbWU1hXLTjyouWbnzYlver5I6Ru46lkQ7YS6DD0RmTdVXO3ZIAAQ66kjZioPp+jY/tVlmbsq2q0LUOzWwjodLRGikgWoXq0YiBDeAuNaaz0uVL434dK4qs47HZeHj3pWLB1WJu+5WoJxM7/3/p2l7aNXCiPJKNnzuXluvZPt5w8Mql5VBKs2y6NReOw7GNgIhs0+cP/HFVvXfUYUNVVdbFWb74ePfrDviru9HU3aZnoAreBdMQFGtu8swFLhfjjkYA18pDcuOiOAmUrqV04xdl4ho6tS332BP+i9vV3Bd6PwDrTQD6J4M1L1YTLZa05J7raCOOJz5ifEMpyHhJBKB/e7M8LVeec7E3rSsz+5o9Otu3PSlRSt9yNR83FNtZxbZfmuPaqMehkRu1W3sz7vjxvufSrfX98Kj59hh7i1i1WxxLHRCRnN4A/Jqq/taw+YaIPD60Pw48N2x/Gnj5kd1fNmz7IlT1Har6elV9vd8+WeGRRCJxeo6jDgjwy8DHVPXnjzS9B3jL8PtbgN85sv37B5Xgm4G92HpAIpE4X47z58C3AN8H/NmqBDnwk8DPAL851CH4LH1hUoD3Am8EPgnMgR98kB1OJBIPluOoA/8ae4H9DSOfV+BHT9mvRCLxZSJ5DCYSG86FiCJkKFI5hhXzDqsko3Y55628pszsqC6Ay/nSXE2+XozLOSu8BGZG7u3V6r+VUTh3nRnld/T4FkvNzZXooA4vYa0yEVMHMtfhNJKmOuJfIUVLmY+Pu3eBWd5QGtF2E99Ejw1wpZibq+RX88PoSvjENWaI9UQacmlpjMrCjfq1x7Zk3Q5Ho56ZoQAU0jGRxpZ9h7liSZCeQG4oVQB5pFryxTACXmHH+AKiZkrxLAtM85atfPxG3CmWzLLanDCZBHbzuWkEdvzSvKgBYRly9gzBuw0+Gt8NQ2Vhw/qVronepHvt1PQD6HDRuHYngaDOdIrpBv8Gq927sNbJatu4JrnvuFoemnH1O9mSXDpTIuxwXDZkNoDL2Tx6oxbSRhxu2uj1Wt3IFk3nmQe7CLg1l/pzdyyd3Q6D4Tf619HPNau9icyHC2EExClZGTEChodX5gJZZEL2WnsgMxx+pt5O+gFEHW46HIdtyb12/KIvuzyasMShTLLGNAI7+RJvlPde7W/1bZWf/jhejRatOnP/mKcjxD0xMwn4SMalmLMN9IlgGmdP6N64RQrKRP4C7lQIOGrjqVmFnGXkidqEjCrabvfbS6Dx3vz+K98Jq/9BewNlGoGI8UprAonEhpOMQCKx4SQjkEhsOMkIJBIbTjICicSGcyHUgcx3vOTqPbM9tvpf+paJNyRECWxllakAXMsPo8UjG/UcdOOr/616blZbfP5gPLXtYVWwqHI7Ws4p25PK/G7XpvNofLqTwLwdz2SsKizanCaSxt27YEqjlt/Fitzb4bTQj7t1TQrfMfWNmS49dx1N8OYqeBVyqmDr4fNQkMv4SriTQKOZGcHpCSw1pzKkvHko2Gunpmpy2JYEhM6s9uzMqFMnSulapn5cOi1dy8TZapKXwLyzM2sfGvMYLogR8KJsF3YYZcx5pHCt2e6kl9FaY1LcauBuMzOPvddM2K/HY2IDwn5VmvXo284hgmkEct+RRW7ENrhIcRElaKS0+GDYYvnz286bBqg7RbKVo+e36CLJVlYTOSZvxuSuZchpjOsNvR5vGwGlQ6JOXJ6AVZVlJeNZEmob7NLive+GmAldYlL3ql9VyM2xX0Tk6gthBE6KY33p7975w5jsuKjlrkNmxtR3wdGFeC4ZiVScWW0/TSUis5qNxtvPm7DGieo0/g0BO22Rl0CnzjQCp0nMAYMn5hov0BgBsbNFrcmxgMTnsrUd0ppAIrHxJCOQSGw4yQgkEhtOMgKJxIaTjEAiseFcCHVARE1dGWzd2qFR2QR6acRaVd1rptyY75hS2q3DmVkPQRVCcGbWXeeUSdGQZ0aug6JPZ37SevVRZUSU3EfCcYf9zko9CBpZ5da4FEZXrM3E3KgdbRcL14VeSisNidFLwKGmzObotfxYJGKM2Ap9r5hAY9QHODR8Qu73bY16YKlcANJnAztfROR54BC4ed59OQWP8HD3Hx7+7/Cw9x/O9jt8hapef+HGC2EEAETkg6r6+vPux0l52PsPD/93eNj7D+fzHdKaQCKx4SQjkEhsOBfJCLzjvDtwSh72/sPD/x0e9v7DOXyHC7MmkEgkzoeL9CaQSCTOgXM3AiLyHSLycRH5pIi8/bz7c1xE5DMi8mci8iER+eCw7aqIvE9EPjH8e+W8+3kUEXmniDwnIh85sm20z0MtyX86XJcPi8g3nF/P7/d1rP8/LSJPD9fhQyLyxiNtPzH0/+Mi8u3n0+svICIvF5HfE5E/F5GPisiPDdvP9xqo6rn9AB74FPBqoAD+FPjq8+zTl9D3zwCPvGDbzwJvH35/O/DfnXc/X9C/bwO+AfjIuj7T15P8l/Ql6L4Z+IML2v+fBv6Lkc9+9TCfSuBVwzzz59z/x4FvGH7fAf5y6Oe5XoPzfhP4JuCTqvpXqloDvwG86Zz7dBreBLxr+P1dwHedX1dejKr+PnD7BZutPr8J+FXt+QCwuypFf14Y/bd4E/Abqlqp6qfpC+R+05l17hio6jOq+ifD7/vAx4AnOOdrcN5G4AngySP/f2rY9jCgwO+KyB+LyFuHbY/pF8qwPws8dj5d+5Kw+vwwXZu3Da/L7zzyJ9iF7r+IvBL4euAPOOdrcN5G4GHmW1X1G4DvBH5URL7taKP273MPlfTyMPYZ+EXgNcDrgGeAnzvX3hwDEdkG3g38uKp+UXLN87gG520EngZefuT/Lxu2XXhU9enh3+eA36Z/1byxel0b/n3u/Hp4bKw+PxTXRlVvqGqnqgH4Jb7wyn8h+y8iOb0B+DVV/a1h87leg/M2An8EvFZEXiUiBfBm4D3n3Ke1iMiWiOysfgf+PvAR+r6/ZfjYW4DfOZ8efklYfX4P8P3DCvU3A3tHXlkvDC/4G/m76a8D9P1/s4iUIvIq4LXAH365+3cUERHgl4GPqerPH2k632twnqulR1ZA/5J+9fanzrs/x+zzq+lXnv8U+Oiq38A14P3AJ4D/C7h63n19Qb9/nf6VuaH/+/KHrD7Tr0j/T8N1+TPg9Re0///L0L8PDzfN40c+/1ND/z8OfOcF6P+30r/qfxj40PDzxvO+BsljMJHYcM77z4FEInHOJCOQSGw4yQgkEhtOMgKJxIaTjEAiseEkI5BIbDjJCCQSG04yAonEhvP/A+wK8V7+wnwYAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "plt.imshow(x_loaded_faces['04_match'])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 132,
   "id": "5893dd1a",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<matplotlib.image.AxesImage at 0x7f5880fee340>"
      ]
     },
     "execution_count": 132,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQEAAAD8CAYAAAB3lxGOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAA7lUlEQVR4nO29f6wt2VXn91l7V51z7o/3o5/bND3dPdhGHiQzE4yxGCR+hMRhBqxoDPnDsf8AQ1AMki2BRJQxECUoo5HIZAzKKIlHtrAwI2IPiWGwRp4ExyIhE8WADR7jHxjaxsbdtLvd7tfv3Z/nVNVe+WPXue/2c61Vp++Pvvdx9le6791b+9Teu/betarO/q71XaKqFBQUrC/CRXegoKDgYlGMQEHBmqMYgYKCNUcxAgUFa45iBAoK1hzFCBQUrDnOzQiIyPeLyGdF5FERedt5tVNQUHA6yHn4CYhIBP4M+D7gMeAPgTeq6qfPvLGCgoJT4bzeBL4deFRVP6+qC+B9wOvOqa2CgoJToDqneh8CvnTs78eAv2t9uJ5u6XTrhlmZJOdtRfsfqzgKyHBZiiDei9DYS5JR79Hp4nxm7NwVPuNBvHFZ9eXvFO270JOPu4yUu5AVxnXsmkf6rdEpDivUPwZnTsfG9ODpx55W1RffXXReRmAUIvJm4M0Ak83r/J3v+6nhzynE+fDVSaeEVsExEs3Viq4eHvn5NSE09uDFuZqTpgIaJE/sYOcgVfaiSLVzLnnBjJVLMppWkA5CM3xhoQUSroFyDRgjfRNBnK+ZoQVp7bLQ2edKsq87lyspGh2XbPjVKB8b82X71o0YOqXZsget2RLUuOPyevLbDh153obKWgiN3be4UP74XT/zxcFz/WZPjMeBR479/XB/7Aiq+k5VfbWqvrqebp9TNwoKCsZwXkbgD4GXi8hLRWQCvAH4wDm1VVBQcAqcy9cBVW1F5K3A/wFE4N2q+qnzaKugoOB0OLc9AVX9IPDB86q/oKDgbFA8BgsK1hwXxg48L3jUh0cf9vCoE5dWod8lPw+MUJuoswsuQHL6rozX7zU9xgxIZgBMyAptn3Bc1WZ8T4+xMVulYet8yfNlkSarDNkqbXusjIXLYQRUiQadhZJpwAFIm8yy/IFMI1rrNTRy1MYQUjWy0PFvROnsuoPa9ONRFWN8trWglgbEoRC9G12DTaPdKff7Ju3w+ZJAxaFeIyQR+9qSog5FGBJ5F8rrm0FBSv+PRTFq9I2QBslzblQeDxUx1pQGkLF+O3MaOvs+gZ4WtsqcZgsKCtYAxQgUFKw5ihEoKFhzFCNQULDmKEagoGDNcTnYAXB2g+0oQkn9Tq9hypS8WytGuReIkj8wThG69KNXf2CcIjxFRJsX6JI/MFLmXPsqwU3R2SVnhJnAIU40jJBpKzBkLrUq9npZRiA6LOAoW2TNqaR+49+bFy9ScFnm3EcWLoUROKK0hjCykL1QYQ0+qRxaHaXC3BvNG3QduYsd+hD6iDG3bfW5eg+SF5xZ/diN5BkB6Wk+dzGKvfKUTBeb0XB9PQ6FaPtX5IdCsAyUaqb5zLBSGbnR9A7tPFTeOWHxsqRPTzanknTcd8TApTACKmJy8qJKZzzqJemR9R7+gB+yK8qIs5Fj9o/1bxDLfjlPPPdprc4b0HIhBntBafC5dhGxF4xAwvavSIj/luKExWrI4bwuDsTk8uPcuZHoQ6gtTlx09Gl6xMcPIHTH1txQeQsa7b6p+mHMKzn7ePoUwXZG8t7cyp5AQcGaoxiBgoI1RzECBQVrjmIECgrWHCc2AiLyiIj8roh8WkQ+JSI/1R//BRF5XEQ+3v+89uy6W1BQcNY4DTvQAj+jqn8kIleAj4nIh/qyX1bVf7pyTWJHpSniRIWNkfi9GOgI92qe7gheHn3Go6xHuHZvp1qS2lRW37dkCKguq/SYi9DZFOPok8GhP7WfS3M+l8yBs8stCZNqE00r0HR21yUufQ2G21ZVJBltd+pSt7FRksPHp0p8kdRVQpmd3X8vMjQ5d/qJjYCqPgE80f++IyKfIUuNn6w+70a1Jg3/wsfUW8F3ojgKuTU/gBvOm0M7bUooeuqwjW+ExFEL1gBJHL78iL60OUJXLiDYCtAAulhBb8Dqu0B1qGZIblz4IbNe6DkALahBrWoQdGpTyhokU6dW6LmKe7OlSki1UXcfwmwpLR+FpZteVONr2cKZ+AmIyEuAbwV+H/hO4K0i8iPAR8lvCzdH63Dn1brTZNSrT8Wv24U36MsueJyzx/UncctRe7Hldm2+GpVxj0HHKy+TzY7Ty8gTK7ft+E/gVk9obNlxj6e/04ZjPNU2UDJy3dk4iFn/mCdlir7/xCregqbZHnuL8BzTnNNWgohsA+8HflpVbwPvAL4ReCX5TeHtxnlvFpGPishHm/nuabtRUFBwQpzKCIhITTYAv66qvwmgqk+qaqeqCXgXOSXZ16DkHSgouBw4DTsgwK8An1HVXzp2/MFjH/sh4JMn715BQcF54zR7At8J/DDwJyLy8f7YzwFvFJFXkr+FfAH4iVO0UVBQcM44DTvwbxneyii5BgoK7iFciihCYJwf9TBCEZrsgfbqtFZUWKdZ+dY63Yk4W6riqsE5o5oTc5ohsw7FR+5zsHaak6Lq+0e4YdJLusnqOjmazyqMC6WaD3deWoiLNNI3Z8yj+FGEHkWoELqEVMMDp1EIte1/kSp6Wtjwr6gcPl5ymenb0dOmFjUatA9FNqrX4LNgl15PYCytspXBVjSh4vG6y88Z5y9FSax2OwhOaGiW1rbqzrHpWg2f36VM47l988KcE4SF3S+Nvt6AR0mlKKOUlXUTS/+PlQlaKkh1tGXkRyhAUd84Spsc2pUcc+8ZkTYbsSHUwb4u8J2kIPsJeDoMrvPYiKS4hnHjaOFyGIEReDHWopq9Cs+p3dPUfZ59O0+c2K/iOZVY3ox5REyNhzG1p1VwFv03MOpAdkE4SdKRJUoAUUHBmqMYgYKCNUcxAgUFa45iBAoK1hz3xMbgGKyNrDPZ3zI2qlaJUCwouDS4p9kBhWBlLO7pHkvBNURxFVylHYnU63R0J9iKdqNXlpXOE7F30NNZXrtqylcL2jqNLHUWrJj/CFLjhPs6Mu+9XoBJpfUZh60s1KFRQmvTgFlS3B680KqvA6HO9n7vY2CulyS0s2A+AJqeArSo2TEK0Yv8lORnFh7Lbe6N2eUwAmLLUIvaKcKPHCvG9AQsh52KrP9vIampZZCdO4TOGUGNdt/dtOeARNtxBIDGd6rJ4hy2gRJV6GwvKg3BHNduJlSHNs9f7ycWW8N3SqqFbmI7zYRW7giPDJ4Pkx2jbYXJ7Y6wMByVNBv2bja82DRCN3Fe8cQPF9YIhzdsB4r5i5Kdl0CzA1Y7Gy6vDvKPaRx7/wbroeYJ1JSX2oKCNUcxAgUFa45iBAoK1hzFCBQUrDmKESgoWHNcDnYA3IAT/7wRZVsHKoKM1D9GEZrl4lNpy8+Y9WIOyZ1zR/vmCGoq9rX3bIrJpI3RUR6rwcgO+1Ky3GQHxEz6qZDHxGJ0Uk6yasvAj8zXsn9mfnGHAhTQiZqsryTQ1o4yTFWvRmwM/LJLJwluOrUREJEvADtksq1V1VeLyA3gXwIvIasLvd5VHHYoIdQJv1zKP4/ciGOOPbY+v4zGtqsxgiqZh7eNxHi8vzq88CrXZfowtOKG7B7x7Faoce34XiR6is6gCCN0U1t6WyaQpjZl3G6ChmBTYS1UBwZFmEAXiTSxaVtPr+BIY8EJwW63Dd8SUSYv3mdxMHzhqQuk3YhGQ+ugp1SDQevGQ0U6J9O0Y7XP6k3gP1DVp4/9/Tbgw6r6iyLytv7vf2ierSNx/ScNk1RyumbXj8AeuMCYwEWe+EGMSKEfOTk5fbOcoCCnDjfTXPcLVVuDiw99gg7LCGh2yLEFT8S8bhFotyKdcaNpRZ4Th2tPEfOLamghTYbLAA7vE+rJsAWRpNR7Ysblx7kiXvYQgXYasQdOzMQnKsJ8ZwqL4QuTJMTDQDzw/QRsw4275qz5gPPbE3gd8J7+9/cAP3hO7RQUFJwSZ2EEFPgdEfmYiLy5P/ZAn6EI4MvAA3efVPIOFBRcDpzF14HvUtXHReTrgA+JyJ8eL1RVFfnaF0tVfSfwToDtG4+coxZMQUGBh1O/Cajq4/3/TwG/RU428uQy/0D//1OnbaegoOB8cNoMRFt9RmJEZAv4e+RkIx8A3tR/7E3Ab5+mnYKCgvPDab8OPAD8Vk5GRAX8L6r6v4vIHwK/ISI/DnwReP1YRW5iT+ucFUQp/azFggZbDFQ6P/TT45WPWIUTMhsaBPXOdTLgHvknOElB3bDVtqfTLDHQFpfV6CZOmPJICm0VXEYH9dNsN1tiMk2S8u69xQ6EVgmNLYee6UOHzhYQg5ERUeQwglWeekVhQ0E6zHOYtXefeGyUF7V6KiOgqp8HvmXg+FeB1zy/yoYPu9lWx+6vJVXm0XBeFllHXho4Sic9WNb7CIgTu55q21cgTSBZob6aQ0NtI7AMmx0uF13e6MbNsEhMdm0/BEkO5SQwv+r7MMSFTxGq+j47nUMRpgm0zo0WWptrz8bRnhONve+H5YwUHEcpEWQu6GR4zFOtaCWExbD1jHP/XlhShBY6wy8DLpPHoAEdd+Jyzh2J2V/lIe2nHXCfiKYPQY/kCHd0U7HFVKDXE3A61tkx5KFV4iKZT8zQJldaO7TKwY3hpaPB77t0+YlmvSmk/kbzxjV0jmF3kqYc9c/yYRBQIzFJLhdSJaYjk5urYflA2hyeFKkSEpSmmQ6WhyYQD8VO2d7Ru5k67RsosQMFBWuOYgQKCtYcxQgUFKw5ihEoKPhrgNOkjitGoKDgrwFOkx/x8rADp7gILyuxH8k3bkHtMGNcLYMUhW6Ky4eniUMRTiHM7c5Hp+NLCtCMljtUqr02qykPIDQdjnsEAPOr24PHNUK7JUyeHT4vtFDvq73DHjMF6OsJ2MvFoyZVMiPTWDoLU+nTxdtz7vXNpZxF0ahsXjsYLN6cNtzY2OdRffFg+aKbUe0LLIxQ4rn6Og/OfXBpjIB3s3bTkRcWx6nGc+hJ0eGM6cObHcooRVsiWpe56D26yhPPiBC8y3YmfOmMYzmIdFMhzgPSGN5Wh0pYtPa4Lho2nxymsrQSNNQml58q2P+6YPo4pNq/kbOUul0cWoer154i3LJ5fgTEWBOhUbqZ7QPRbEG77TgbbXdU0dA6EGXeVQRDMKXbTDTbkWQ4E0mLS+t6IfGXxgh4Mjqeeo/3AS/hAvReeV5Od69tfF7Y5Yz7es8zxbVXvwbJqkqeH4WqaQQkKWExfKdpCsS5mslHMk+PKcaSqt5L05k6K2YfRhxq+uO2M1AuM/VtkrhaB8vkIlb9YhgAAFWhTZZuEGjQEW0M8b1Ti59AQUGBhWIECgrWHMUIFBSsOYoRKChYcxQjUFCw5rg07IDHAFg0XOqjzaJBm1SHPnebeXyHIlQn4qzf5bbCjY/SUHth0M4Ovuu/MOrbkOv2+h6aSDwcPj/uA41DEe4fMHnM3umub27xzLdcHyxrtoX9hxNpYpw/STnvgZFJWhbC5GYcHh+Fes8Loc4ntZvD5d0sh/RamYPjYf6MhuFxabeVdG2YuhCBrauHJGPCD5uKvcMJamXQrhPNlhKNkODQiEt3e2vmxEZARL6JnFtgiZcB/zVwHfjPga/0x39OVT/oVqZ2vnoNTl72XljD1Kif+Wmuj7c/BEnZCcNCaKAZ9pmhi+I6loxJkgOIEwMO4ib5CI2dVyCT4U7NTQdVNJ2J9Oo2OrE7lzZq01GpOoT6VrC1/+tA2lA7wch2R2PdKErOSWDaJ8maAZbEfAPVgWTRlAHEef6xOPd4KDTNsIOECuzOQzZyQz0TCJOOYBiYuL2gaQO6P7yg6ttiJjbJDdhFJzYCqvpZ4JUAIhKBx8kagz8G/LKq/tOT1n2mOEcu/jQ4Ex8B022Oo/j1FxyrfsE8ha/7UjTlayB3/X/Cdse9SJ9//UddOtGr3/nirPYEXgN8TlW/eEb1FRQUvEA4KyPwBuC9x/5+q4h8QkTeLSL3nVEbBQUF54BTGwERmQD/APhf+0PvAL6R/FXhCeDtxnkl+UhBwSXAWbwJ/ADwR6r6JICqPqmqnaom4F3kPARfA1V9p6q+WlVfXU+N3bWCgoJzx1lQhG/k2FcBEXnwWAqyHyLnITg5PLXhy46xjbmRDSx3D+k0m36rMCZgpvjGTjoMnFLgdRkPa4bE6p2PGeWWhDz0jPAJ6VfpmQW3a6tc21CR5nIJNnuQO2A17rQ7glMZgT7hyPcBP3Hs8D8RkVeSr/YLd5UN16NqqtNmitDgjDVn5rUWdOtSbHcmzU6zrUSD6sp0lJg+DExzWKwZMjvROwqxAwiNeGkDcrSbSZ1CvtNHQqwNSNOhMZo3etqckJwQ624WTfqyOoDJTRyKEOZBSMORytSbDY1zaYtYjeiVw+TmMKdc7cPkltoqzc2dMO3BvlcQjHh/BJp5pN0yUo9H6K62xK3hxrc25nRtpDOsn4aAJwLhGf3T5h3YA15017EfPlllw4ezVrxhIBLEYMfNp5G8AkcpvI0nl4rSbDiLfSq0m0bM/sShssgOLXEuWORudeDc5OAmABmjyjRkJ6duNrxq0vaM5srEPP/wRmUns5AsqGLmNGiVjafVdLLKegKBbjZ8/mJjkhN4OPkc4q6R/luh2hOq/eFT46KXaTfmLFW4/h1LOfTBMsl+BBY0QJsqFoajUruIpMMKMcpTDYaLATCiwWAXFRQUrAOKESgoWHMUI1BQsOYoRqCgYM1RjEBBwZrj0oQSe/DSMXsptsEP1Fmqs3q8tRcF6CrjrhK5mOxdW+kwo9kAQqe29PUyNbmF3k/ATApahV7a21YrtoREIddbGWHK0uW+22OeZb/V2AU/YgZOsBMuXc8AGOMqnRd5ybh/xdINYKDrR3S0RXeHnoJshxtITYTODrE+TcDYpTECnjKwR314zkQaxL0X71CEw+WpdvwAep0DSzVXpY9rNyij2ArVoR37Xu+pHyrc9XoIg21rpvCccUvR1htotyrm1yvTSBzcH9ybQdRWBA6NUu8lh74UUox0loZEXZljDvmS653hc0OX/QAs47o0Hl5eAQ+Sck4HC/EwG1CrbmkE6YYb6focFJbPjAbNCtIOJW3hchgBtX0BIC9qC5IESQYvnPqnteUHEG0tAoC05d9I1aHSWRr11R1eebBtybHpp8k3b/a9N27WEzE0Np8N2dnHy4kQWhBnvoLjw9BNhYVE0zkszpXp7UQ6MJ6YnZiORpDn21vwqRZMYe9uJG+B82a2ROXqTyiH140nfb1M6W4bCXDSzTfi+pV48132BAoK1hzFCBQUrDmKESgoWHMUI1BQsOYoRqCgYM1xadgBd7d5LCTWjEAUumSHGqeqj0C0KOkNoTqw43njHFuRtwVx6kZ8RWBJdhgygFaYPP6yTZMdaP2osm4qvVS7tUOvph8A5B1+UyZ+Al0tTPaGz60OE/Wumo+nel9oZ/azq50J7cZwmYqQJphce1C943syVD7mRwBMdqwwQqh3WlI9zOu2U6G5Csna/e+jG82weo/VADNaFS6JEch6CSdUDtF+coawyBNq6cRrFNcIMLMddiRBdZAc3jbTeF44b2jsBVfNlWZTTB+Grpbs3GIgLDKFOYS4yDHztnGU/mYwzj8UU4pderq32bYdjTRAdDILVwf2ahZVohECDVBtBObdcLlGpUFMOlpSXktmHov9frIcvxIzxBpYXK9pDT+BJbUZ58Pnhkb6sPrh8jjHXQ+nzjsgIu8G/mPgKVX92/2xG+S8Ay8hi4e8XlVvSs53/T8ArwX2gR9V1T/y6s8iGZ5rn3Ou4+wjSn5Sm26DahsQ8oBb/KokRRyPv/wZx8GkN17W+XGRaGfR9TMwRGiy00pjL5ijmPkRFR1T8KT1vTi9XA8a/DnLjdttj6kWeQ8FTX2iGuvtq38LsG6muEh9Wnfj/Ij7ltJNnbeU/o3WTJyS+oeG9aawsNfSGFbdE/hV4PvvOvY24MOq+nLgw/3fkDUHX97/vJksPFpQUHBJsZIRUNXfA5656/DrgPf0v78H+MFjx39NMz4CXBeRB8+grwUFBeeA07ADDxwTFP0y8ED/+0PAl4597rH+WEFBwSXEmVCEqvq8NYGfk3egMbaKCwoKzh2nMQJPLl/z+/+f6o8/Djxy7HMP98eeg+fkHai3TtGNgoKC0+A0FOEHgDcBv9j//9vHjr9VRN4H/F3g1rGvDTacXXA15K2P5J+93d5WEesDDVQORZgqMWk2VIkLOy5+GeGXDC4/VXmn2tqJrnc6mk37ujWIHa7bwmQ3mZF60mne5bbCoKOdmRf6XXJnkz5VNlV2pNjraSGAsx58diC0avt2SB4by/9CoxAapToY3mavn52jdUSNa2tCxeHXD68nFWH/QTUVhyVlDYZgUYSt9jTgcHk1V3dOTi05LiLvBb4XuF9EHgP+G/LN/xsi8uPAF4HX9x//IJkefJRMEf7YKm24F2CV9Q4tFp+tqU95blFdi+5IWGQI0vn+CxocOqkPS7VSbKeYeX7LiHSzkM8fEqgAprfsxR46Jc497hLXeIZW85g65d7NmGonrl6zw04yckIsrgREnbwFuw3BCN8GSDHYjjECaLBlwUPvQ7EwEoAkpZ1FusnwHbV/f2XqBSAQF2L7RySIB8pk13go7OfcHJbGQ1cLWM5j+N/VVzICqvpGo+g1A59V4C2r1PtCwUwu0vsRmE59SUcVenyuXVHDwoxlol566w19TnutAFOI5YR+V885f6QOzzhKsq8vn+cs1pCfmtbbm2g27mbbwTaso+ngdZxr12i/OY5mdXJUsJbZjWxVpN4wW433RvUkKe9L7EBBwZqjGIGCgjVHMQIFBWuOYgQKCtYcxQgUFKw5LkUo8SjMiDTpKRNjB568oyrN8JZr3FsgjR2WGpuKZtMYogDdNBAWBk3X02xWTL7GfL61m7vYDkSrboXJbufHj/dp24fbzuG8tt5A6tOm29fmsQdRoDWyOUvKc2ZlJV5chdgEk+KcPu1L/nop1zVILrdoOoGwSK7ydbMVTan2g6/zFX8nO07Mv+ZM1LOvDlcwfeoAotBtDHOr3QMTDNHtXL0zLpfDCDgOQYAjvKGkKtBtGLHrNcRNmxeutioWVw0jIML8qi1IspT0nuwMd646TFS7yQxrlXnP+xqTExdiCq1kXf9k+igs6btuaqQep08wYsx+qnsDZIx7PEx+wpYI82uGQ822sLia9Q4G657n1OEaDP39jRppbR4vtMmlTqVTkhXTX0mWsN83jN/OIdObE7rpcN+mz9amcxhwR0hmqKjXYcCSx68DaRJpN4fntJ2JaZzApy/L14GCgjVHMQIFBWuOYgQKCtYcxQgUFKw5ihEoKFhzXA524JSwaLZMCYFawS7SU0ZmKDF+AJHX9gqCmHgBSmpnmGUpjT2m0GxmepY7kYTDTecgJb92Eyo2q5KlzO1d8GW/vMjR02J0bswTFVE7QElSDmA6cbvedAbJY2axB/1xc9ycpi+HERDM+HN3ofdBVVb45uKqQLIlptuZcPCiMDxAAof3q5kldsnrmjH93VIh1vBROGhIta0m3M0q81wAaZM9NknRGAjWogtK64x5s5m5fDOiLclIKLGwsCjCK0pzPZF2jbtZhHZm3zCLK7UrSa7zzvbN6Ou0qNFumlODG1HOyP4h1a0pYTZcweR2RWvQ1SrQTdX0I1gqV1vGs5tVtBuR1tCYaDdt34tl+xYuhRFQwYyTtgN9M7qJ0A3nc6CdZf41GfHny/DNwVtJodoV+0bQLABhOfTERaLabwgHw1Yi3N4nbM5swZQ6EOa250mYtyTDcURjIE2jmzwkzu0nWlXdeYsawvxqdFO6d1PoJsNlGkDmYurrx4Pcdjcb7tzu34hojG66+XrPElPp8zkYN2rq+xwXw7dFdeMK7ZUpydAT6CaOXwn5weC94bQzyQ+Gob5fizRbQmckdZlft9sFx0mJsidQULD2GDUCIvJuEXlKRD557Nh/LyJ/KiKfEJHfEpHr/fGXiMiBiHy8//nn59j3goKCM8AqbwK/ytcmHvkQ8LdV9d8D/gz42WNln1PVV/Y/P3k23SwoKDgvjBqBocQjqvo7qrr8wvoRsqJwQUHBPYiz2BP4z4B/c+zvl4rIH4vI/y0i322ddDzvQDsveQcKCi4Kp2IHROTngRb49f7QE8DfVNWvisi3Af9KRL5ZVW/ffa6qvhN4J8D2fQ+PkQAmNGDuVGuVKXWLzUoVmW836g6Nn3gzdE4Cyban8RrjA4dzqCvEokU8IVFwI+mQXhDT6bsktfveibv7nypbLRh6ytaLvuwEMbI5h5ZektyIDJ1CN7N32dMUc8KzerTd91QJXY2pJqyTilQHUm2UO2OWP+AUCRChs8K/BZotydc3gHZTj65vCGFxDqHEIvKj5EzFr+kVhlHVOTDvf/+YiHwO+FvAR0/ajoqj7tpz3RY/mure6cVa7Co5pNUYuMmO+uGZY0rEncJimCLUvX1kUkNrUEJp04znXyI59GK7Ec1Q49Ck3hAM1xs6aGqbs15cFToru65At6l0E0MGPi6Nq32jgseXw+KqbbnbqwkwxrQBsDMDpxrSRNBoaSFs0k2DaSDbmZ0JGvqcB4YBUvHp7lRnHwvLx6G90hHmwVzL1YHdrxMZARH5fuC/BP59Vd0/dvzFwDOq2onIy8iZiT8/Wp+Xkhm1HYmOnT+IRL5CY0Glunf2sTzAWsCYFA35iWg5KrWtkGYVYWEQ5tMphGAuOIA0GZ4eUaWLgc4QPElR6KZi6+vHmN+SLKeakBekNW7dRl6Qw+cq3ZUOjHwLBOgOA93c4uqFat9+S5ks8N0ZNZhaBWj2BUjGlKQJNNF2VJIu5qe99RZS2zkwlu17npTdxPavSJPlG5g9rt7b9KmchYzEIz9Lvj0+JHnAPtIzAd8D/Lci0pBvwZ9U1buzGRcU3Js4qR/1JceoETASj/yK8dn3A+8/bacKCgpeOBSPwYKCVXHazE6XFMUIFBSsir+mXweKESgoWBV/Td8ELkUUIX0K8UEIiCM57iXPXGYctnZkjyhEo1uxgcZqO2a6yqKbpAukWSQZEWlxOkGrCJVNLqvFV5Oz71qy3hqz8mxKxi53rb2WwnC7KebdaIv3braU9rrBhQVl8z6HjwIOwoz2cLjxaiLUOzbVNtnVI1+CIUjn+EeQd9/bDSNT9OS5/39Nee1LiqvYoeXLZKPmmFdy5AMx3DclTdXMco3oiTUgLoURkKRMblti8COa6QcV9cHwyNZ7gXbDpny0gji3pbVVoNkeLks1NNcS1b7Vdi/7bYT78sD1TBE6s9YZTikEod0IzA259FRBuyF23oJeI8FckJNe/MPoW3Ug6G1Lqh32u02wqCxROIzUB8OVVwfZPyMa0tyzpxsmt+wX2M2nguk3ogLtLLC4YtCTfQi0RU+GxncI0pG7KbRqOu1Ip6TaF2ORFntSJPR0t+OEZeBSGAEU27MO37pVATQMX0Y2HoIajgRp0g+s07A1salW0jQ5ryn9j2GA0qz23Rkhq8kMVd17BNp5A3ofCMtPYOmQYzkr9n4ZtvcZxENbGUglolPLWUgJ82DeDKGB2Kipz+/lW8jlasb7qyw9Eg09gAbC1H6TkE6zM5E1ZbXvYeqlHofcN9uBS0hdX9FQ9TGLvdg5Oux1VvYECgrWHMUIFBSsOYoRKChYcxQjUFCw5ihGoKBgzXEp2AFpO+JNW1hEjHBcugQxUE+HiV3dnNJem5KMSL3mSqTdsGm6ZktYXB3erk2zxOz+A7q/vDJYHjolNIl2Y3gLfnGtyoq/xk53vdOY0ZNIVqZdXLVVc9tN0F2DhtvLobgWldZsQZzbO9WzZ/QurannQoOwuDY85stQ2smt4XOnzyYmz7ZmavLq5j6yZ/sh6N4+MjVCP0XQjSnp6rBzR5rVNFdqc9zTRDi8HkxWpZvJEQswhNAqtdF1lX68jcXY9j4GVrp5SX5YvBlZySUxAqSE7O4Pl6mircHj9RSbtMNcmDQt9bwBI811fbNCjfTdAKmOpGrYe6ObVhw8u83W00Zq8gM77ThkI3FwfzRpvvn12uWdUw0HDxnjMu3YuDJn5+bwYo+3I9WeYK0YScLkNqaB2v6rzuXLUxSmt4wbqcrhtpYs+OR2SzxozcWctqYER2fBDeUFpLM5uuX9Z9URmvxjNbH0I7Ak7BdbwZUk18o2IHHh08I5Ttk+3z7vshgBGBXQcJGMiVXts/xYOeEVOrV5X1WXa5cOx1tRR79saXZjGC6LtjMP9GVGthsJSozJLM9ZgLA963r74HHenleeeF6cSXOiDWu+ddm214A1aP05jvE9C5gZiLwlLMd+DLgiNau0cUKUPYGCgjXHSfMO/IKIPH4sv8Brj5X9rIg8KiKfFZG/f14dLygoOBucNO8AwC8fyy/wQQAReQXwBuCb+3P+ZxEZk18sKCi4QJwo74CD1wHvU9W5qv4F8Cjw7afoX0FBwTnjNHsCb+3TkL1bRO7rjz0EfOnYZx7rj30NjucdWCQ/9PS8sUxMOvQzCjV+Vmr4hB1eoV4Rfe5m1AobUytXr3qURffuH+Di4u5PmnJ8zXFSduAdwD8iT/c/At5OTkKyMo7nHbgW79e0Z1CE1s5/riRPvEUhLhawKybzIIB0TvRil3hR85Lhbk0r9h6aUu8aqccXyacIF8rhDVu6O/2dHVpDjhwgtYFv+YbHB8teNN3jm7f/ij+4Ndz3z928n6efvAoLI6b/VqQ6tMNPNx7bRY3suYhkXX7HEISmQxbDlcthg25MzPqbq1OqKCZPFwEaLzQUU+FZa9sHADKzEVo1iazQiMnjgx2WvgpCAzHYVJ9GQQ02CByVYk5oBFT1yeXvIvIu4F/3fz4OPHLsow/3x3xUFeFF9w2XiaATIyZ/OZnGpMui8WW9JzXtfZsmNbO4b+I67EiCZstwRNoOhEbNmP5qv2PriWTmNdiVK2DIegPolY6/uHljsOzJ6Ta3mhmP714bLN87nMAiECwdhl2hOkx2DHqnhMb2PgltZ/puZNo2QRy+2zQGtApmyvZU93kBzIQzASpDFUQErQJpw5Bqr0OebzPPhfT05nB5vaNOKvtc5tGAGnPyk+G+gVRivrrrHNRaq/h+Aif6OiAiDx7784eAJXPwAeANIjIVkZeS8w78wUnaKCgoeGFw0rwD3ysiryS/9H0B+AkAVf2UiPwG8GlyerK3qKr9vl1QUHDhONO8A/3n/zHwj0/TqYKCghcOxWOwoGDNUYxAQcGa43IEEAlZfnuwTNDa6GaUHEVocTZtl3eSjShCrQLdLNqhxJvBCaLRHOFopZIOORrPpG10KXppUF1zmz5EoAO6NHxdizay305oO0ONOPkhr3d4f0+726FuUwKLel2eZ3H6ToLWJVRGfDiM+V6WmerTvR+FVX7EGlgUYWezA5ADzjxXhoQiVvLdER8U0ZPH4F0KI6AxkK5sDhcGaK8Mx4enSUCDUO0O6w1UuzVax5zCeyBytrlas/NIbUbr7f8NYfaU0a1WmT2rNJvDk9ZtCKFRJrcNGm6nY3azJRlGJM6V3YcNGk0gxcieDI/ZXqXc2tkktYbx64R4EIiW7PdeVu0NlqpvFDDi/VFF9g7QhUEhdh1IQLaM+d6YkmZ19jUYOn0jIF20DVhTmz4GKpAm0ZYkj0vjaFUO1aETxrxnh19DNhLWfCPQzYJNT4acZVotCjKRUwSb55vduhxGQJISDo1FEwJiaPdLENKGmCm6tQ60G/akz69G2g0nY0NyZLkRmg1oLSMwA5naOvKiNclJD77YFpLluCJQ7wjRSGyiAVJdud/1qn0hGOnBJeEmL2lubBC2DC4eCPNN+2ZQRUNAjZs8TSsW12vTf2J+LVBP7Te0SSUuX65BzL5JgsmtFmkNB7B5l98WjDlLVcgG0mk7WQYqCO1UzOteJsqxEBr6txijbe9cu6igoGAdUIxAQcGaoxiBgoI1RzECBQVrjmIECgrWHJeCHUDVDv8Mwd7NVUVFjmSs70aqIs22rejbbNlpqAE3lTTkc+22+1+MbdnFot/xNXaT2y27XYDqEFLj7ERXYjIbGpQwt9NsS7qjCjyEZqsiGEk/RSE4Cs65fTvkNkWh2Qp0phy69NLcw3WHJtpz1ldZHVjsgBIPW8KhEZW6e5CjHw12QGYTX716Gm0fhZjH3JyzKEeRq1bfpbOZrsuflVgErNwBIk523jxoVgrvrhbm18WmCK9DMrLnQr5JrXzx2dlHzDhtjSCtfZNDzkdvLdh2W6l37Cyz9S5gOBNpgK5WOkN+P02zCnNobQPUbAtiGLD5tWCmDoeerhqBR1k1V2zDvrimdFMxKUKNvqw3CrWxHuJCCYvKfugAxIAazkhpoyJN7JTt3STQTW0fhVQ546J5PXly6JJs5WwvK/GlMAIaA53hEKQidqrpQOZGLd62zryr9bTvZkq3aQ+cbnTQWYUgTTBz2UuC6FjmI9lvK7O5JzmugOQEI0NItbK40SGbw+Z/stGQktAZoiXtbk27E82nTl0L0XkLCQv7icUyPbfDZzdbtn9GuwFhbnsMZsPqePyp3XY3ESTVdLPhxicx8/yWYW+2q9xvx+HHdFQKuKnLQ6t3xm4AkgDHI9EzjGVPoKBgzVGMQEHBmuOkeQf+5bGcA18QkY/3x18iIgfHyv75Ofa9oKDgDLDKnsCvAv8j8GvLA6r6ny5/F5G3A7eOff5zqvrKM+pfQUHBOWMVZaHfE5GXDJWJiACvB/7DM+5XQUHBC4TTsgPfDTypqn9+7NhLReSPgdvAf6Wq/89YJRqF+X0Gn7UCLD+Abpp30C12oN1OyH0Lc0f1vmt2unSARVux+6zB0x1E4tzhrANoBRqHt7nTxNYqQPNu7+KakTZ9I/H13/BVHrny7GD5Ixs36Qjcaob7/pe79/FXN6/RGczIwbMzU6kYzVoIYWFHKEqHyw60m4pWw+PSXelouspO/70Qm3Hp9QKsyE9J0G4G4uFwBdPt7L9gzemRD4OB5+RmGOygw+e3+ElgUy9xYck0OCef1gi8EXjvsb+fAP6mqn5VRL4N+Fci8s2qevvuE0XkzcCbASab12k3T7ZH2W4Ii23DIeea0FxV2wFjoqgRcw9wa2eTjY3hEGcRZVK1xOkwR9glQUM088JPbyqTW46fwK1AZaTvBqgOoLli+EfMhCc3r3G4GCbbb25vElAOWqN8f4OuDai1oqYdqbZXc2qFsDc86KERpMtG7k4u8Du/p1mievEBs+nw3fBN9z/FzfkmyejbM3ub7O0bdHMS0l6FNIajUytUu2LqLDQ7EfFTGowmdwmtIzLTYGbBlk6PD9Nwu8kJiz8PZyERqYD/BPi25TFVnQPz/vePicjngL8FfPTu848nH9m+8YieJDOOiu99tuTavaQMph8AkJpAa8R/x5ggdna3R65H2p62NoxADDknvYXQKcHg6jUIOo8czIdv8p16SgyJw2Z4+heLiq4bMcremEbsLeelek+A5z7a8u9aKdNpy9Z0+OK/frbDxLpTgEno+LJR1qXAfhvMZ6IGIVWR4Gj/By8zlfeUBzfeX5b/eGnP1ZG+GEnH7ikxnYYi/I+AP1XVx44aEnnxMgGpiLyMnHfg86doo6Cg4JyxCkX4XuD/A75JRB4TkR/vi97Ac78KAHwP8ImeMvzfgJ9U1VWTmRYUFFwATpp3AFX90YFj7wfef/puFRQUvFAoHoMFBWuOYgQKCtYclyKKEMHM/qtOGQKLq8Li6nDx/D6l2+7sLdWgyJ49BNW+cPhig06qlHA9IWF4SzhMOpCaOB+ue/MrHfXuSAptZ8c31ZIdDQbQTYR4WNNcGS7/yvZW5uGtiLWFoBuKGlvKstkRJ8M79CJKrBKHlty5BEIDaXv4/On1Q7774c/z8PTmYPlbbnycTXFEIID3794/ePzZbpPfefoVPLl/ZbB8fz7h1uYW7aERXTmLTG6JSeNNnlWSoRYM0E0gGE4pOYJQESOLdWjplZpNR4CjegbhMBeXwggoPv9pxfSnKtM21o228aSgT1euY4rnvBFaqG9baa6hqabURuz8JMH0WWWyM9xAddCZ0tawpIRsXice2kZCKyEugmk8Uy/L7Y35/Lodl7+4Eegqg0cTpQ0QD43F3vUaDAbFWFUJm8SD/dTRyKFZ3qjy1W57sGy3m3FzvslTzww/NdqdmvqZytRDCHNhsmPnFpjsqpsCPFW21oKoEud2Kvs4zyHvFh0eOnEfGh4uhRE4DdTjVsll5pI62ZitDidjzHnDzdADLud8qi57E3Lqyk+HzlUb6eF55a0wpp5ewSpwPQrPCWVPoKBgzVGMQEHBmqMYgYKCNUcxAgUFa457emPQTCF99AHcDTBPuPGo3A76yqmmHeFH8YJNzmCDzOzb8ro9Uco+kGf4A33dnliot/eX8OWEcdpeAafdOzO7rr2K8VjfT9qAl/F4ZExRtVVEj3/GgnPupTEC1satBqGdDV9ANwUC1DvDFz+9lSkXU004yAilI0z2rBTcUO0nUwJaOu3z1Rvl7UhCeYWwsP0IpLEpRo2BybNCWBhcfpMg2hly0yyy+9DE8c8Yf4G0JMM19JLnlj5+SCSEueED8WRX48RusqcT/nL+ouGydsoze5ukrwxzzrOvBja+Yq8XBOpdO2X7ZCeZYeuQ11tc2OspzhPBKJc2oVHMbM6SYqYIzbV+fnoCZ4JUw8HXWc4lvlyytDZf3mxipnrOlfv9ErXrlpRFP0zrHfonljFpujFu1esdqwxiY4fTAmgVSJZjSq2kOpicczfNfbbeJKqD7PhiIdWeUddcryHcsfvsJv8vL2VaDxvAT119kJtzQ2udrIVwe2e4XBPoM1M2vjzc9mQHJju+EYhzx7Cr+noDqsS5cZMnJRx2BMt3pE1QBZLRdpReztxJbmKh7AkUFKw5ihEoKFhzFCNQULDmWEVU5BER+V0R+bSIfEpEfqo/fkNEPiQif97/f19/XETkn4nIoyLyCRF51XlfREFBwcmxyptAC/yMqr4C+A7gLSLyCuBtwIdV9eXAh/u/AX6ALCv2crKQ6DvOvNcFBQVnhlWUhZ4gqwijqjsi8hngIeB1wPf2H3sP8H8B/7A//muqqsBHROS6iDzY1zMMwcygC5hJP2EkuWXsd+gd8cYxPwGzaBUqOdiRXakSmzPuG9BgsA/LKr3Em2BLb/f9MgVax0QrHf+Io7Yt2qSPLxJD4FWbwMFhTWMkS308XGPnYGayqwd7U3TfWNYJ6gMxBVzDQgktZgg1kgVePT8AF3248GDVSZEuQbLYg4QmzOzCkjRnkTYGxpvT50UR9klIvhX4feCBYzf2l4EH+t8fAr507LTH+mOmEUgR5tct2oWconsAofHzrqdakGBPWuh8AxMXaqepHpvwpL0RMIongopNMUpStBoOqpXeccR0lpL+JnccRLpJMI1E1iqwF6wXxpy1IbJ8t9G1THEast5IQL9SmQrZXw1XqG/Z13X9WX9iQosZ3h3nSnWQbAMfgOTYtzaNOPxAPBi+MumUsL+wfUe6BLWdNn3Ucc556V/ZCIjINlk/8KdV9bYca1RVVWT0tri7vqO8A9X1+1wPMl9rHdN5Q1pbxx3y06w6dJwoHGcgNLcrho586FK+yZ3U5h5E7bh1yH4A3piZ/eaO15qZ3IREN3USp8iI8ZxnQ2H3zU7SIYnRcFwrH4Mo1HvOjdjPWTwwjMAiO+uY6y1KfrU0blRJ4159MjccuFKCxheZEVXUartLiCMT762lldgBEanJBuDXVfU3+8NPisiDffmDwFP98ceBR46d/nB/7DlQ1Xeq6qtV9dVha2uVbhQUFJwDVmEHBPgV4DOq+kvHij4AvKn//U3Abx87/iM9S/AdwC13P6CgoOBCscrXge8Efhj4k2UKcuDngF8EfqPPQ/BFcmJSgA8CrwUeBfaBHzvLDhcUFJwtVmEH/i32N7TXDHxegbecsl8FBQUvEIrHYEHBmuNSRBF6se0jVLobuRUXThbY5WfmyY6W2/cj9UQ1h+UOloGgqNE3SbqCHoLDDsRgR4z144JDbwYSanDOEO7s0hsYYwdCY+2gQ3DmJbQ+swFQHajpYxEPHEaHTOOZIdZdQjonJXwIJo+/rFsr47na07ZiRH9KSkjbOdRrf9xiBxxKN9d/yUOJpbN9AVCoDLpJ2rygLOePaq6Exl4w0mUjgDFAYdE5kwopCjodDpzP2ZDt+G7oJ8binDtFgx3/mabRife3/RNy5/ANb3++mUE3QfRuVLVl4EOnVAdqxtWHpVF2ZOKtcNx8fusbkU4zHWeUEUCMF2QVzYbAgE4CyQgdh95wG5CkiLXWjs6PtgOY9PNlPRjOylnovCDOosniGsZ5veeazeVr74k1XBxa2xkIgOh41QmkSTiKvb8bqXKSptA/jVvbCMS5IpV/o9kef7nsNAI5nhEYk/bxnkpZcckxfiP+E+rMiWh20HJ9MIKixp0k0r+dWeNaBfdG1pDzOXjl5i2nSrA8RPvy7CBmlIfcb+vt0vYJKXsCBQVrj2IECgrWHMUIFBSsOYoRKChYcxQjUFCw5rgU7EBoYfa0x3EaBf0OuxVOnDlpWx222u9cM6hBcsjtYKeh2QzMrw6XdzOhmzl9Tz3fbZTXezoalmrKeotkxV+DYdSA6wfghWdDH5np+RAku47Q9bSt5cOQtA+DHj7fYwcUyRSgJa+t5Jh7JzI0VbYKs9YhR1cafUuTTAnbId52NJ+kPpzY8J+QVgldcnJBKMmhGFN9ySlCUqbELLjpwzuHjlrSaMbYtJuRbmYPXDcNtFN7QtsZZj76VJFvFKPvoe0pTms9BnzxipHFBjbFl1Nc2+N6ZCQsjAWNj/lAiT0nS57dozc9ukur4DtZdbZx1WWCD8+JSxUxLlBSP65G+yk49GMAWfqWDNVdKSl5T6zeyckyUJfeCJwQOVvMWGB+/4QYKuodZqybKUVPP3+ES+/7N5qB6HmpMNxdvyEw0V+vlz3pQuE4KsGKqk1O3eZ8L29ya82MCnOM4LQD642LjKw1/LcQzzu17AkUFKw5ihEoKFhzFCNQULDmKEagoGDNUYxAQcGa41KwAzmizi631ISzLLZfd6ptzrmbCYvtYJY3V8TOvruk2RwfhTi34+bjfEkROpLmHhevzia3KtLZ173MLP789KFXh7phykv6c4Ra9eoP9g5/cuhDEFfFWVQzpWs9Gnu/FCsvQSCQHNpjVD7Ckagf054QHaFVvczeloTxCwkR+QqwBzx90X05Be7n3u4/3PvXcK/3H873Gr5BVV9898FLYQQAROSjqvrqi+7HSXGv9x/u/Wu41/sPF3MNZU+goGDNUYxAQcGa4zIZgXdedAdOiXu9/3DvX8O93n+4gGu4NHsCBQUFF4PL9CZQUFBwAbhwIyAi3y8inxWRR0XkbRfdn1UhIl8QkT8RkY+LyEf7YzdE5EMi8uf9//dddD+PQ0TeLSJPicgnjx0b7HOfS/Kf9fPyCRF51cX1/KivQ/3/BRF5vJ+Hj4vIa4+V/Wzf/8+KyN+/mF7fgYg8IiK/KyKfFpFPichP9ccvdg60T3d8ET9ABD4HvAyYAP8OeMVF9ul59P0LwP13HfsnwNv6398G/HcX3c+7+vc9wKuAT471mZxP8t+Q3X6+A/j9S9r/XwD+i4HPvqJfT1Pgpf06ixfc/weBV/W/XwH+rO/nhc7BRb8JfDvwqKp+XlUXwPuA111wn06D1wHv6X9/D/CDF9eVr4Wq/h7wzF2HrT6/Dvg1zfgIcH2Ziv6iYPTfwuuA96nqXFX/gpwg99vPrXMrQFWfUNU/6n/fAT4DPMQFz8FFG4GHgC8d+/ux/ti9AAV+R0Q+JiJv7o89oHfSsH8ZeOBiuva8YPX5Xpqbt/avy+8+9hXsUvdfRF4CfCvw+1zwHFy0EbiX8V2q+irgB4C3iMj3HC/U/D53T1Ev92KfgXcA3wi8EngCePuF9mYFiMg28H7gp1X19vGyi5iDizYCjwOPHPv74f7YpYeqPt7//xTwW+RXzSeXr2v9/09dXA9XhtXne2JuVPVJVe1UNQHv4s4r/6Xsv4jUZAPw66r6m/3hC52DizYCfwi8XEReKiIT4A3ABy64T6MQkS0RubL8Hfh7wCfJfX9T/7E3Ab99MT18XrD6/AHgR/od6u8Abh17Zb00uOs78g+R5wFy/98gIlMReSnwcuAPXuj+HYeICPArwGdU9ZeOFV3sHFzkbumxHdA/I+/e/vxF92fFPr+MvPP874BPLfsNvAj4MPDnwP8J3Ljovt7V7/eSX5kb8vfLH7f6TN6R/p/6efkT4NWXtP//ou/fJ/qb5sFjn//5vv+fBX7gEvT/u8iv+p8APt7/vPai56B4DBYUrDku+utAQUHBBaMYgYKCNUcxAgUFa45iBAoK1hzFCBQUrDmKESgoWHMUI1BQsOYoRqCgYM3x/wOpQqnz7D6ArwAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "plt.imshow(x_loaded_objects['04_match'])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "5e8ad2bb",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 121,
   "id": "77266844",
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "04_match\n",
      "80_match\n",
      "64_match\n",
      "75_match\n",
      "48_match\n",
      "56_match\n",
      "26_match\n",
      "37_match\n",
      "42_match\n",
      "08_match\n",
      "15_match\n",
      "34_match\n",
      "17_match\n",
      "57_match\n",
      "74_match\n",
      "72_match\n",
      "78_match\n",
      "20_match\n",
      "39_match\n",
      "53_match\n",
      "10_match\n",
      "83_match\n",
      "13_match\n",
      "44_match\n",
      "59_match\n",
      "12_match\n",
      "16_match\n",
      "22_match\n",
      "81_match\n",
      "06_match\n",
      "46_match\n",
      "43_match\n"
     ]
    }
   ],
   "source": [
    "dg_objects = []\n",
    "eg_objects = []\n",
    "ke = []\n",
    "correlation_coef_objects_faces = []\n",
    "\n",
    "for k in x:\n",
    "    if k in x_loaded_faces:\n",
    "        print(k)\n",
    "        ke.append(k)\n",
    "        #print(np.shape(x[k]))\n",
    "        #print(y_faces[k])\n",
    "        #dg_objects.append(np.array(x[k]).flatten())\n",
    "        #eg_objects.append(np.array(y_objects[k]['a']).flatten())\n",
    "        correlation_coef_objects_faces.append(spearmanr(np.array(x[k]).flatten(), \n",
    "                                                  np.array(x_loaded_faces[k]).flatten())[0])\n",
    "\n",
    "    #break\n",
    "\n",
    "#correlation_coef, p_value = spearmanr(np.array(dg_objects).flatten(), np.array(eg_objects).flatten())\n",
    "# correlation_coef = np.corrcoef(a, b)\n",
    "# print(\"Correlation coefficient:\", correlation_coef)\n",
    "# print(\"p-value:\", p_value)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 122,
   "id": "d5f30f29",
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[-0.10075085172665267,\n",
       " 0.2542756629665477,\n",
       " -0.17341913257995764,\n",
       " 0.21556623867479816,\n",
       " -0.2623735289955923,\n",
       " 0.15269670636585908,\n",
       " 0.1642464000623147,\n",
       " 0.2245327057953101,\n",
       " -0.048337343091761686,\n",
       " 0.0696604856827532,\n",
       " 0.1934242234418116,\n",
       " -0.2555726922582451,\n",
       " -0.07729199084159952,\n",
       " 0.14751407026537808,\n",
       " -0.023034032455380812,\n",
       " 0.4250848067342584,\n",
       " 0.25171704628165975,\n",
       " 0.2650534396020691,\n",
       " 0.3091994979675506,\n",
       " 0.3682398116359065,\n",
       " -0.04164284292578038,\n",
       " 0.028982738034957586,\n",
       " 0.06950836673637245,\n",
       " 0.4119967797266436,\n",
       " -0.26163045830707243,\n",
       " 0.4270500003045581,\n",
       " -0.38567077615954715,\n",
       " -0.025889839219443853,\n",
       " 0.2016495410854709,\n",
       " -0.08095141345533323,\n",
       " -0.10385885466513126,\n",
       " 0.294212833469525]"
      ]
     },
     "execution_count": 122,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "correlation_coef_objects_faces"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 123,
   "id": "df8da20e",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "0.08231836244225771"
      ]
     },
     "execution_count": 123,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "np.mean(correlation_coef_objects_faces)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 124,
   "id": "f4c9834d",
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "0.21720539343106646"
      ]
     },
     "execution_count": 124,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "np.std(correlation_coef_objects_faces)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 125,
   "id": "9465aa0e",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[<matplotlib.lines.Line2D at 0x7f5881623a90>]"
      ]
     },
     "execution_count": 125,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAD4CAYAAADvsV2wAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAWAElEQVR4nO3df6zddX3H8efLK3U3qLswmtLeFtu5plu1hOoRZ1BHtKywZbTrDIPNrSQunVEyFrPGMhanGNMqzrlkhO0OSaqZq4hYmsFWoejUZbKeUrQWUlsJ2l5Ke/1RHVknFN7743yvnJ6ec++59/vtOd/v+bweCen5fr+fnu/n22/vqx8+38/381FEYGZmg+8l/a6AmZn1hgPfzCwRDnwzs0Q48M3MEuHANzNLxEv7XYFOLrjggli8eHG/q2FmVil79uz5QUTMbXestIG/ePFi6vV6v6thZlYpkr7X6Zi7dMzMEuHANzNLhAPfzCwRDnwzs0Q48M3MElHaUTpmZgDb945z684DPHXiJAtGhtm4ehlrV472u1qV5MA368BB03/b945z0z37OPnc8wCMnzjJTffsA/C9mAV36Zi1MRk04ydOErwYNNv3jve7akm5deeBn4f9pJPPPc+tOw/0qUbV5sA3a8NBUw5PnTg5o/02NXfpmLXhoJm9IrvCFowMM97mz3zByHDeaibJLXyzNjoFioNmakV3hW1cvYzhc4ZO2zd8zhAbVy8roLbpceCbteGgmZ2iu8LWrhxl87oVjI4MI2B0ZJjN61b4ge0sFdKlI+lK4O+AIeCOiNjSodzvAXcDb4gIz4xmpTUZKB6lMzNnoyts7cpR/7kXJHfgSxoCbgOuAI4AuyXtiIjHWsq9ArgReDjvOc16wUEzc+5zL7ciunQuBQ5FxBMR8SywDVjTptyHgY8C/1fAOc2shNwVVm5FBP4ocLhp+0i27+ckvQ5YFBH3TfVFkjZIqkuqT0xMFFA1M+sl97mX21kflinpJcAngOunKxsRY8AYQK1Wi7NbMzM7G9wVVl5FtPDHgUVN2wuzfZNeAbwW+IqkJ4FfB3ZIqhVwbjMz61IRgb8bWCppiaQ5wLXAjsmDEfGTiLggIhZHxGLgG8DVHqVjZtZbuQM/Ik4BNwA7gceBuyJiv6RbJF2d9/vNzKwYhfThR8T9wP0t+z7QoezlRZzTLGWeydNmw3PpmFWMpwy22fLUCmYV45k8bbYc+GYV45k8bbYc+GYV45k8bbYc+GYV4+kLbLb80NasYjyTp82WA9+sgjx9gc2Gu3TMzBLhwDczS4QD38wsEQ58M7NEOPDNzBLhwDczS4SHZZqViGfBtLPJgW9WEp4F0862Qrp0JF0p6YCkQ5I2tTn+bkn7JD0q6euSlhdxXrNB4lkw7WzLHfiShoDbgKuA5cB1bQL9sxGxIiIuAT5GY1FzM2viWTDtbCuiS+dS4FBEPAEgaRuwBnhsskBE/LSp/LlAFHBes4GyYGSY8Tbh7lkw03G2n+EU0aUzChxu2j6S7TuNpPdK+i6NFv6ftfsiSRsk1SXVJyYmCqiaWXV4Fsy0TT7DGT9xkuDFZzjb944Xdo6eDcuMiNsi4tXA+4G/6lBmLCJqEVGbO3dur6pmVgprV46yed0KRkeGETA6MszmdSv8wDYRvXiGU0SXzjiwqGl7Ybavk23A7QWc12zgeBbMdPXiGU4RLfzdwFJJSyTNAa4FdjQXkLS0afO3gYMFnNfMbGD0YiWz3IEfEaeAG4CdwOPAXRGxX9Itkq7Oit0gab+kR4H3AevzntfMbJD04hlOIS9eRcT9wP0t+z7Q9PnGIs5jZjaoerGSmd+0NesRT5tg0znbz3Ac+GY94GkTrAySDHy3tKzXphpy57971ivJBb5bWla0bhoQnjbByiC5+fA9QZUVqdu3I3sx5M5sOskFvltaVqRuGxCeNsHKILnAd0vLitRtA8LTJlgZJNeHv3H1stP68MEtLZu9mcxw6WkTrN+Sa+G7pWVFcleNVUlyLXxwS8uK04u3I82KkmTgp8TvHJx9bkBYVTjwB5jfOTCzZg78ApS1Fe23O82smQM/pzK3ov3OgZk1S26UTtHK/Oau3zkws2aFBL6kKyUdkHRI0qY2x98n6TFJ35K0S9KrijhvGZS5Fe0hg2azt33vOJdteYglm+7jsi0PFbqYeL/kDnxJQ8BtwFXAcuA6Sctbiu0FahFxMXA38LG85y2LMrei/c6B2ex0O0dS1RTRh38pcCgingCQtA1YAzw2WSAivtxU/hvAOws4bymU/c3dfg0ZLOuDbLNuDOqAhyICfxQ43LR9BHjjFOXfBfxbuwOSNgAbAC666KICqnb2+cWbM5X5QbZZN8rcVZtHT0fpSHonUAN+o93xiBgDxgBqtVr0sGq5+MWb0w1q68jSMZM5kqqkiIe248Cipu2F2b7TSFoF3AxcHRE/K+C8VlKD2jqydAzqgIciAn83sFTSEklzgGuBHc0FJK0E/pFG2B8v4JxWYmV+kG3WjUEd8JC7SyciTkm6AdgJDAF3RsR+SbcA9YjYAdwKvBz4vCSA70fE1XnPbeVU9gfZZt0YxK7aQvrwI+J+4P6WfR9o+ryqiPNYNfhBtlk5eWqFCivz0MdBbB2ZVZ0Dv6I89NHMZspz6VRUmefwMbNycgu/hLrpqvHQRzObKQd+yXTbVTOoL4bkUeZnGmZl4C6dkum2q2ZQXwyZrUGd7MqsSA78kum2q2ZQXwyZLT/TMJueu3RKZiZdNR76+CI/0zCbnlv4JeOumtnxdA5m03Pgl4y7ambH/1CaTc9dOiXkrpqZ83QOZtNz4NvA8D+UZlNzl46ZWSIc+GZmiXDgm5klwoFvZpaIQgJf0pWSDkg6JGlTm+NvlfSIpFOS3lHEOc3MbGZyB76kIeA24CpgOXCdpOUtxb4PXA98Nu/5zMxsdooYlnkpcCgingCQtA1YAzw2WSAinsyOvVDA+czMbBaK6NIZBQ43bR/J9s2YpA2S6pLqExMTBVTNzMwmleqhbUSMRUQtImpz587td3XMzAZKEYE/Dixq2l6Y7TMzsxIpIvB3A0slLZE0B7gW2FHA95qZWYFyP7SNiFOSbgB2AkPAnRGxX9ItQD0idkh6A/BF4DzgdyR9KCJek/fc1nteRjBtvv/Vpojodx3aqtVqUa/X+10Na9K63i40piD29M1p8P2vBkl7IqLW7lipHtpauXkZwbT5/lefA9+65mUE0+b7X30OfOualxFMm+9/9TnwrWteRjBtvv/V5xWvrGteRjBtvv/V51E6ZmYDxKN0zMzMgW9mlgr34ZuZ36BNhAPfLHGtb9COnzjJTffsA3DoDxh36Zglzm/QpsOBb5Y4v0GbDge+WeL8Bm06HPhmifMbtOnwQ1uzxPkN2nQUEviSrgT+jsYCKHdExJaW4y8DPg28Hvgh8PsR8WQR5zaz/NauHHXAJyB3l46kIeA24CpgOXCdpOUtxd4F/DgifgX4W+Cjec9rZmYzU0Qf/qXAoYh4IiKeBbYBa1rKrAG2Zp/vBt4uSQWc28zMulRE4I8Ch5u2j2T72paJiFPAT4Bfav0iSRsk1SXVJyYmCqiamZlNKtUonYgYi4haRNTmzp3b7+qYmQ2UIgJ/HFjUtL0w29e2jKSXAr9I4+GtmZn1SBGjdHYDSyUtoRHs1wJ/0FJmB7Ae+C/gHcBDUdaJ+G3geaKwtKV8/3MHfkScknQDsJPGsMw7I2K/pFuAekTsAD4FfEbSIeBHNP5RMOs5TxSWttTvv1e8sqRctuUhxtvMETM6Msx/bnpbH2pkvZTC/feKV2YZTxSWttTvv6dWsKQsGBlu28Ib1InCUu6vbie1+9/KLXxLSkoThU32V4+fOEnwYn/19r2tg+jSkdL9b8ctfAPSaQmmNFHYVAubDOL1diOl+9+OA9+SG7mQykRhqfdXd5LK/W/HXTrmJe4GlBc2sVYOfHNLcECl3l9tZ3Lgm1uCA2rtylE2r1vB6MgwojHWfPO6Fcl2Z5j78I1GS7C5Dx/cEhwUKfdX25kc+Jb8yAWzVDjwDSh3SzCVIaNmZ5sD30ottSGjVi1Va4z4oa2VmoeMWllV8U1mB76VmoeMWllVsTHiwLdS85BRK6sqNkZyBb6k8yU9IOlg9ut5Hcr9u6QTkv41z/ksPX55yMqqio2RvC38TcCuiFgK7Mq227kV+KOc5+rK9r3jXLblIZZsuo/LtjxU6v40m55fHrKymkljpCy5lHeUzhrg8uzzVuArwPtbC0XELkmXt+4vmkd0DKYyDxm1dHX7/kqZcilv4M+LiKPZ56eBeXm+TNIGYAPARRddNOPf7+lgzayXummMlCmXpg18SQ8CF7Y5dHPzRkSEpFwL5EbEGDAGjTVtZ/r7q/gQxcwGW5lyadrAj4hVnY5JOiZpfkQclTQfOF5o7WYo9eXLzKx8ypRLeR/a7gDWZ5/XA/fm/L5cPKLDzMqmTLmUN/C3AFdIOgisyraRVJN0x2QhSV8DPg+8XdIRSatznrctj+gws7IpUy4pIle3+1lTq9WiXq/3uxpmZpUiaU9E1Nod85u2ZmaJcOCbmSXCgW9mlggHvplZIhz4ZmaJcOCbmSXCgW9mlggHvplZIhz4ZmaJyDs98kCr2or0ZmZTceB3UKZFC8zMiuAunQ6quCK9mdlUHPgdlGnRAjOzIjjwO6jiivRmZlNx4HdQpkULzMyK4Ie2HXS7Ir2ZWVXkCnxJ5wOfAxYDTwLXRMSPW8pcAtwOvBJ4HvhIRHwuz3l7pZsV6c3MqiJvl84mYFdELAV2Zdut/hf444h4DXAl8ElJIznPa2ZmM5Q38NcAW7PPW4G1rQUi4jsRcTD7/BRwHJib87xmZjZDeQN/XkQczT4/DcybqrCkS4E5wHc7HN8gqS6pPjExkbNqZmbWbNo+fEkPAhe2OXRz80ZEhKSOK6JLmg98BlgfES+0KxMRY8AYNBYxn65uZmbWvWkDPyJWdTom6Zik+RFxNAv04x3KvRK4D7g5Ir4x69qamdms5e3S2QGszz6vB+5tLSBpDvBF4NMRcXfO85mZ2SzlDfwtwBWSDgKrsm0k1STdkZW5BngrcL2kR7P/Lsl5XjMzmyFFlLOrvFarRb1e73c1zMwqRdKeiKi1O+apFczMEuHANzNLhAPfzCwRDnwzs0R4tkzrK68bbNY7DnzrG68bbNZbDvwecmv2dFOtG5zyn0sq/PPQew78HnFr9kxeNzhd/nnoDz+07ZGpWrOp8rrB6fLPQ3848HvErdkzed3gdPnnoT8c+D3i1uyZ1q4cZfO6FYyODCNgdGSYzetW+H/pE+Cfh/5wH36PbFy97LQ+S3BrFrxucKr889AfDvwemQw1j0ow889Dv3i2TDOzAeLZMs3MLF/gSzpf0gOSDma/ntemzKskPZItfLJf0rvznNPMzGYnbwt/E7ArIpYCu7LtVkeBN0XEJcAbgU2SFuQ8r5mZzVDewF8DbM0+bwXWthaIiGcj4mfZ5ssKOKeZmc1C3vCdFxFHs89PA/PaFZK0SNK3gMPARyPiqQ7lNkiqS6pPTEzkrJqZmTWbdlimpAeBC9scurl5IyJCUtshPxFxGLg468rZLunuiDjWptwYMAaNUTpd1N/MzLo0beBHxKpOxyQdkzQ/Io5Kmg8cn+a7npL0beAtwN0zrq2Zmc1a3i6dHcD67PN64N7WApIWShrOPp8HvBnwDElmZj2WN/C3AFdIOgisyraRVJN0R1bm14CHJX0T+A/g4xGxL+d5zcxshnJNrRARPwTe3mZ/HfiT7PMDwMV5zmNmZvl5iKSZWSIc+GZmiXDgm5klwoFvZpYIB76ZWSIc+GZmiXDgm5klwoFvZpYIB76ZWSIc+GZmiXDgm5klwoFvZpaIXJOnmZmVxfa949y68wBPnTjJgpFhNq5extqVo/2uVqk48M2s8rbvHeeme/Zx8rnnARg/cZKb7mnMwu7Qf5G7dMys8m7deeDnYT/p5HPPc+tOr7XULFfgSzpf0gOSDma/njdF2VdKOiLp7/Oc08ys1VMnTs5of6rytvA3AbsiYimwK9vu5MPAV3Oez8zsDAtGhme0P1V5A38NsDX7vBVY266QpNcD84Av5TyfmdkZNq5exvA5Q6ftGz5niI2rl/WpRuWUN/DnRcTR7PPTNEL9NJJeAvwN8BfTfZmkDZLqkuoTExM5q2ZmqVi7cpTN61YwOjKMgNGRYTavW+EHti2mHaUj6UHgwjaHbm7eiIiQFG3KvQe4PyKOSJryXBExBowB1Gq1dt9lZtbW2pWjDvhpTBv4EbGq0zFJxyTNj4ijkuYDx9sUexPwFknvAV4OzJH0TERM1d9vZmYFyzsOfwewHtiS/Xpva4GI+MPJz5KuB2oOezOz3svbh78FuELSQWBVto2kmqQ78lbOzMyKo4hydpXXarWo1+v9roaZWaVI2hMRtXbH/KatmVkiStvClzQBfC/HV1wA/KCg6vSLr6EcfA3l4GvozqsiYm67A6UN/Lwk1Tv9b01V+BrKwddQDr6G/NylY2aWCAe+mVkiBjnwx/pdgQL4GsrB11AOvoacBrYP38zMTjfILXwzM2viwDczS8TABb6kKyUdkHRIUiXn7JH0pKR9kh6VVJnXjSXdKem4pG837et6VbQy6HANH5Q0nt2PRyX9Vj/rOBVJiyR9WdJjkvZLujHbX5n7MMU1VOY+AEj6BUn/Lemb2XV8KNu/RNLDWUZ9TtKcntVpkPrwJQ0B3wGuAI4Au4HrIuKxvlZshiQ9SWOSuUq9ZCLprcAzwKcj4rXZvo8BP4qILdk/wOdFxPv7Wc+pdLiGDwLPRMTH+1m3bmSz1s6PiEckvQLYQ2NhouupyH2Y4hquoSL3AUCN+eDPjYhnJJ0DfB24EXgfcE9EbJP0D8A3I+L2XtRp0Fr4lwKHIuKJiHgW2EZjVS7rgYj4KvCjlt1drYpWFh2uoTIi4mhEPJJ9/h/gcWCUCt2HKa6hUqLhmWzznOy/AN4G3J3t7+m9GLTAHwUON20foYJ/UWj8pfiSpD2SNvS7MjlNuypaRdwg6VtZl09pu0OaSVoMrAQepqL3oeUaoGL3QdKQpEdprBXyAPBd4EREnMqK9DSjBi3wB8WbI+J1wFXAe7NuhsqLRv9hFfsQbwdeDVwCHKWxZGepSXo58AXgzyPip83HqnIf2lxD5e5DRDwfEZcAC2n0QPxqP+szaIE/Dixq2l6Y7auUiBjPfj0OfJHGX5SqOpb1yU72zbZbFa3UIuJY9oP7AvBPlPx+ZP3FXwD+OSLuyXZX6j60u4aq3YdmEXEC+DKNFQBHJE0uPtXTjBq0wN8NLM2egs8BrqWxKldlSDo3e1CFpHOB3wS+PfXvKrXJVdGgw6poZTcZlJnfpcT3I3tQ+Cng8Yj4RNOhytyHTtdQpfsAIGmupJHs8zCNwSSP0wj+d2TFenovBmqUDkA2VOuTwBBwZ0R8pL81mhlJv0yjVQ+NJSg/W5VrkPQvwOU0poA9Bvw1sB24C7iIxnTX10REaR+KdriGy2l0IwTwJPCnTf3hpSLpzcDXgH3AC9nuv6TRB16J+zDFNVxHRe4DgKSLaTyUHaLRuL4rIm7Jfsa3AecDe4F3RsTPelKnQQt8MzNrb9C6dMzMrAMHvplZIhz4ZmaJcOCbmSXCgW9mlggHvplZIhz4ZmaJ+H84cvga/26YRwAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "plt.plot(correlation_coef_objects_faces, 'o')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "beb428b2",
   "metadata": {
    "scrolled": true
   },
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "802ebc6d",
   "metadata": {},
   "outputs": [],
   "source": [
    "len(correlation_coef_objects_faces)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "15fd0c53",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "de148aa2",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 126,
   "id": "81236ae7",
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "04_match\n",
      "80_match\n",
      "64_match\n",
      "75_match\n",
      "48_match\n",
      "56_match\n",
      "26_match\n",
      "37_match\n",
      "42_match\n",
      "08_match\n",
      "15_match\n",
      "34_match\n",
      "17_match\n",
      "57_match\n",
      "74_match\n",
      "72_match\n",
      "78_match\n",
      "20_match\n",
      "39_match\n",
      "53_match\n",
      "10_match\n",
      "83_match\n",
      "13_match\n",
      "44_match\n",
      "59_match\n",
      "12_match\n",
      "16_match\n",
      "22_match\n",
      "81_match\n",
      "06_match\n",
      "46_match\n",
      "43_match\n"
     ]
    }
   ],
   "source": [
    "dg_objects = []\n",
    "eg_objects = []\n",
    "ke = []\n",
    "correlation_coef_objects_objects = []\n",
    "\n",
    "for k in x:\n",
    "    if k in x_loaded_objects:\n",
    "        print(k)\n",
    "        ke.append(k)\n",
    "        #print(np.shape(x[k]))\n",
    "        #print(y_faces[k])\n",
    "        #dg_objects.append(np.array(x[k]).flatten())\n",
    "        #eg_objects.append(np.array(y_objects[k]['a']).flatten())\n",
    "        correlation_coef_objects_objects.append(spearmanr(np.array(x[k]).flatten(), \n",
    "                                                  np.array(x_loaded_objects[k]).flatten())[0])\n",
    "\n",
    "    #break\n",
    "\n",
    "#correlation_coef, p_value = spearmanr(np.array(dg_objects).flatten(), np.array(eg_objects).flatten())\n",
    "# correlation_coef = np.corrcoef(a, b)\n",
    "# print(\"Correlation coefficient:\", correlation_coef)\n",
    "# print(\"p-value:\", p_value)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 127,
   "id": "dba12c21",
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[0.10077085228611085,\n",
       " -0.25427393104554996,\n",
       " 0.17341822765902512,\n",
       " -0.2155556367170711,\n",
       " 0.26237400680709805,\n",
       " -0.15269682105266183,\n",
       " -0.164246677639594,\n",
       " -0.224532724505017,\n",
       " 0.048335540766563496,\n",
       " -0.06966928843927432,\n",
       " -0.19342372193973395,\n",
       " 0.25557163697233815,\n",
       " 0.07729658632301512,\n",
       " -0.1475155556602704,\n",
       " 0.02303393072595521,\n",
       " -0.42508400713417965,\n",
       " -0.25171739850259944,\n",
       " -0.26505411499071624,\n",
       " -0.30920615018392217,\n",
       " -0.36824085190318,\n",
       " 0.04164074124524904,\n",
       " -0.0289836352720952,\n",
       " -0.06951248967947542,\n",
       " -0.412002962990319,\n",
       " 0.2616283007991018,\n",
       " -0.4270499763202216,\n",
       " 0.3856824974262459,\n",
       " 0.0258962300910163,\n",
       " -0.20165712196527014,\n",
       " 0.08095667385570754,\n",
       " 0.10386040374506872,\n",
       " -0.29421395643115544]"
      ]
     },
     "execution_count": 127,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "correlation_coef_objects_objects"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 128,
   "id": "d1060902",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "-0.08231785605218161"
      ]
     },
     "execution_count": 128,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "np.mean(correlation_coef_objects_objects)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 129,
   "id": "11387221",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "0.21720727644996"
      ]
     },
     "execution_count": 129,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "np.std(correlation_coef_objects_objects)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 130,
   "id": "159e549d",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[<matplotlib.lines.Line2D at 0x7f590e7628e0>]"
      ]
     },
     "execution_count": 130,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAD4CAYAAADvsV2wAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAWtElEQVR4nO3df4wc52He8e9jRkwPttOTogNNniiTTQm2SiiI6VaJIds1IrqU0tZkWFeRWrcUYIMVHAEuXBCmqkJNFBRkrCTNP0JSNhHCpHVlRZEpAmLLyKTTxECtamXKoiWDFiPIEU+UeJHMJEKY6Ief/nFz1vK092NvhruzO88HIG5+vNx55+b22dl33nlHtomIiNH3rkFXICIi+iOBHxHREAn8iIiGSOBHRDREAj8ioiF+YNAVmM/ll1/udevWDboaERFD5Yknnvgz2xPd1tU28NetW0e73R50NSIihoqk78y3Lk06ERENkcCPiGiISgJf0g2STko6JWnPAuX+uSRLalWx3YiIWLrSgS9pBXAvcCNwFXCLpKu6lHsv8BngsbLbjIiI3lVxhn8tcMr2c7ZfB+4HtnUp94vALwF/XcE2IyKiR1UE/iTwQsf86WLZ90n6cWCt7UcWeiFJuyS1JbWnp6crqFpENMXB41Nct+8Y6/c8wnX7jnHw+NSgq1Q7F/2iraR3Ab8K/PvFytreb7tluzUx0bUbaUTEOxw8PsUdD51g6tx5DEydO88dD51I6M9RReBPAWs75q8ols16L/BjwB9Keh74SeBQLtxGRFXuOXKS82+8dcGy82+8xT1HTg6oRvVUReA/DmyQtF7SSuBm4NDsStt/bvty2+tsrwO+BnzMdu6qiohKvHjufE/Lm6p04Nt+E7gdOAJ8C3jA9tOS7pb0sbKvHxGxmDXjYz0tb6pKhlawfRg4PGfZXfOU/UgV24yImLV760bueOjEBc06Y5esYPfWjQOsVf3UdiydiIil2r55pmPgPUdO8uK586wZH2P31o3fXx4zEvgRMRK2b55MwC8iY+lERDREAj8ioiES+BERDZHAj4hoiAR+RERDJPAjIhoigR8R0RAJ/IiIhkjgR0Q0RAI/IqIhEvgREQ2RwI+IaIgEfkREQ1QS+JJukHRS0ilJe7qsv03SCUlPSvqqpKuq2G5ERCxd6cCXtAK4F7gRuAq4pUugf8H2JtvXAJ9n5qHmERHRR1Wc4V8LnLL9nO3XgfuBbZ0FbP9Fx+y7AVew3YiI6EEVD0CZBF7omD8N/MTcQpJ+DvgssBL4qW4vJGkXsAvgyiuvrKBqERExq28XbW3fa/tHgM8B/3GeMvttt2y3JiYm+lW1iIhGqCLwp4C1HfNXFMvmcz+wvYLtRkRED6oI/MeBDZLWS1oJ3Awc6iwgaUPH7D8Bnq1guxER0YPSbfi235R0O3AEWAHcZ/tpSXcDbduHgNslbQHeAL4L7Cy73YiI6E0VF22xfRg4PGfZXR3Tn6liOxERsXyVBH4szcHjU9xz5CQvnjvPmvExdm/dyPbNk4OuVsRA5P3Qfwn8Pjl4fIo7HjrB+TfeAmDq3HnueOgEQP7Io3HyfhiMjKXTJ/ccOfn9P+5Z5994i3uOnBxQjerh4PEprtt3jPV7HuG6fcc4eHyhDl4xKvJ+GIyc4ffJi+fO97S8CXKW11x5PwxGzvD7ZM34WE/LmyBnec2V98NgJPD7ZPfWjYxdsuKCZWOXrGD31o0DqtHg5SyvufJ+GIw06fTJbBNFeiW8bc34GFNdwj1neaMv74fBkF3PgStbrZbb7fagqxEX0dw2fJg5y9u7Y1Pe+BHLJOkJ261u63KGHwOTs7yI/krgx0Bt3zyZgI/ok1y0jYhoiAR+RERDJPAjIhoigR8R0RAJ/IiIhqgk8CXdIOmkpFOS9nRZ/1lJz0h6StJRSe+vYrsREbF0pQNf0grgXuBG4CrgFklXzSl2HGjZvhp4EPh82e1GRERvqjjDvxY4Zfs5268z85DybZ0FbH/F9l8Vs19j5kHnERHRR1UE/iTwQsf86WLZfD4J/K9uKyTtktSW1J6enq6gahERMauvF20lfQJoAfd0W297v+2W7dbExEQ/qxYRMfKqGFphCljbMX9FsewCkrYAdwL/yPbfVLDdiIjoQRVn+I8DGyStl7QSuBk41FlA0mbgvwIfs322gm1GRESPSp/h235T0u3AEWAFcJ/tpyXdDbRtH2KmCec9wO9JAvhT2x8ru+2L7eDxqYzkGBEjo5LRMm0fBg7PWXZXx/SWKrbTT3neakSMmtxpO488bzUiRk0Cfx553mpEjJoE/jzme65qnrcaEcMqgT+P3Vs3MnbJiguWjV2ygt1bNw6oRhER5eQRh/PI81YjYtQk8BeQ561GxChJk05EREMk8CMiGiKBHxHREAn8iIiGSOBHRDREAj8ioiES+BERDZHAj4hoiAR+RERD5E7biIiLrC4PU6rkDF/SDZJOSjolaU+X9R+W9HVJb0r6eBXbnM/B41Nct+8Y6/c8wnX7jnHw+DserxsR0TezD1OaOnce8/bDlAaRTaUDX9IK4F7gRuAq4BZJV80p9qfArcAXym5vIXX6xUZEQL0eplTFGf61wCnbz9l+Hbgf2NZZwPbztp8CvlfB9uZVp19sRATU62FKVQT+JPBCx/zpYlnPJO2S1JbUnp6e7vn/1+kXGxEB9XqYUq166djeb7tluzUxMdHz/6/TLzYiRt9SrhnW6WFKVQT+FLC2Y/6KYlnf1ekXG9XJhfioo6VeM9y+eZK9OzYxOT6GgMnxMfbu2DSQXjpVdMt8HNggaT0zQX8z8C8reN2e5SlVo2f2TTV7bWb2TQXkuMZALXTNcO7fZl0eplQ68G2/Kel24AiwArjP9tOS7gbatg9J+ofAl4BLgX8m6Rds/2jZbXdTl19sVKOXN1VEPw3jNcNKbryyfRg4PGfZXR3TjzPT1BPRk2F8U0UzrBkfY6rL32GdrxnW6qJtxFy5EB91NYzXDBP4UWvD+KaKZqjTxdilylg6UWu5EB91NmzXDBP4AdRncKduhu1NFVFXCfxI18eIhkjgR7o+jrA6f3OL/kvgR7o+jqh8c4u50ksn0vVxRGX02JgrgR/p+jii8s0t5kqTTjSu62NT2rWH8U7QfmjK8e8mgR9Ac7o+Nqlde/fWjRfsK+SbW5OOfzdp0olGaVK79jDeCXqxNen4d5Mz/GiUprVrN+Wb21I17fjPlTP8aJT0SGq2ph//BH40SnokNVvTj38lgS/pBkknJZ2StKfL+h+U9MVi/WOS1lWx3YhepV272Zp+/GW73AtIK4BvAx8FTjPzyMNbbD/TUebTwNW2b5N0M/Aztn92oddttVput9ul6hYR0TSSnrDd6rauijP8a4FTtp+z/TpwP7BtTpltwIFi+kHgekmqYNsREbFEVQT+JPBCx/zpYlnXMrbfBP4c+OG5LyRpl6S2pPb09HQFVYuIiFm1umhre7/tlu3WxMTEoKsTETFSqgj8KWBtx/wVxbKuZST9APC3gVcq2HZERCxRFYH/OLBB0npJK4GbgUNzyhwCdhbTHweOuezV4oiI6EnpO21tvynpduAIsAK4z/bTku4G2rYPAb8F/K6kU8CrzHwoRERNNHlAsSapZGgF24eBw3OW3dUx/dfAv6hiWxFRraYPKNYktbpoGxH91/QBxZokgR/RcE0fUKxJEvgRDdf0AcWaJIEf0XBNH1CsSTIefkTDNe0Rl02WwI+IPCilIdKkExHREAn8iIiGSJNO9CR3ZDZbjv9wS+DHkuWOzGbL8R9+adKJJcsdmc2W4z/8EvixZLkjs9ly/IdfAj+WLHdkNluO//BL4MeS5Y7MZsvxH365aBtLljsymy3Hf/ipzIOnJF0GfBFYBzwP3GT7u13K/W/gJ4Gv2v6nS3ntVqvldru97LpFRDSRpCdst7qtK9ukswc4ansDcLSY7+Ye4F+X3FZERJRQNvC3AQeK6QPA9m6FbB8F/rLktiIiooSygb/K9pli+iVgVZkXk7RLUltSe3p6umTVIiKi06IXbSV9GXhfl1V3ds7YtqTlXxCYeY39wH6YacMv81oREXGhRQPf9pb51kl6WdJq22ckrQbOVlq7iIioTNkmnUPAzmJ6J/BwydeLiIiLpGzg7wM+KulZYEsxj6SWpN+cLSTpj4HfA66XdFrS1pLbjYiIHpW68cr2K8D1XZa3gU91zH+ozHYiIqK8DK0QEdEQCfyIiIZI4EdENEQGT4uRkcfvRSwsgV9DCa7e5fF7EYtLk07NzAbX1LnzmLeD6+DxqUFXrdby+L2IxSXwaybBtTx5/F7E4tKkUzO9BFeaft62ZnyMqS6/ozx+L+JtOcOvmaU+NzRNPxfK4/ciFpfAr5mlBleafi60ffMke3dsYnJ8DAGT42Ps3bGpsd94IrpJk07NLPW5oWmzfqftmycT8BELSODX0FKCK23WEdGrNOkMqbRZR0SvcoY/pJba9BMRMSuBP8Tq3GadLqMR9ZPAj8plmIOIeirVhi/pMkmPSnq2+HlplzLXSPq/kp6W9JSkny2zzai/dBmNUXDw+BTX7TvG+j2PcN2+YyNxj0vZi7Z7gKO2NwBHi/m5/gr4N7Z/FLgB+DVJ4yW3GzWWLqMx7Eb1xsaygb8NOFBMHwC2zy1g+9u2ny2mXwTOAhMltxs1ttS7hSPqalS/pZYN/FW2zxTTLwGrFios6VpgJfAn86zfJaktqT09PV2yav0zil/9ykiX0Rh2o/otddGLtpK+DLyvy6o7O2dsW5IXeJ3VwO8CO21/r1sZ2/uB/QCtVmve16qTXKB8p3QZjWE3qjc2Lhr4trfMt07Sy5JW2z5TBPrZecr9EPAIcKftry27tjW00Fe/JgdcnbuMRixm99aNF5zIwWh8Sy3bLfMQsBPYV/x8eG4BSSuBLwG/Y/vBkturnbp/9Ut/+Ijejeq31LKBvw94QNInge8ANwFIagG32f5UsezDwA9LurX4f7fafrLktmuhzl/90twUsXyj+C211EVb26/Yvt72BttbbL9aLG8XYY/t/277EtvXdPx7soK610KdL1COak+DiFie3GlbUp2/+tW9uSki+iuBX4G6fvWrc3NTRPRfhkceYXVuboqI/ssZ/girc3PTKElPqBgWjQz8Jr1B69rcNCrSEyqGSeOadEZ1UKQYjPSEimHSuMDPGzSqlJ5QMUwa16STN2hUqZeeUE1qSox6atwZfobujSottSdUmhKjDhoX+OmqGFXavnmSvTs2MTk+hoDJ8TH27tj0jjP3NCVGHTSuSSddFaNqS+kJlabEqIPGBT6kq2L0X+56jjpoXJNOxCCkKTHqoJFn+BH9lqbEqIMEfkSfpCkxFnOxu+6WatKRdJmkRyU9W/y8tEuZ90v6uqQnJT0t6bYy24yIGEX96Lpbtg1/D3DU9gbgaDE/1xngA7avAX4C2CNpTcntRkSMlH503S3bpLMN+EgxfQD4Q+BznQVsv94x+4PkQnHEvHI3bnP1o+tu2fBdZftMMf0SsKpbIUlrJT0FvAD8ku0X5ym3S1JbUnt6erpk1SKGS+7GbbZ+jAKwaOBL+rKkb3b5t62znG0D7vYatl+wfTXwd4Gdkrp+MNjeb7tluzUxMbGM3YkYXrkbt9n60XV30SYd21vmWyfpZUmrbZ+RtBo4u8hrvSjpm8CHgAd7rm3ECMvduM3Wj667ZdvwDwE7gX3Fz4fnFpB0BfCK7fNFL54PAv+l5HYjRk7uxo2L3XW3bBv+PuCjkp4FthTzSGpJ+s2izN8HHpP0DeD/AL9s+0TJ7UaMnNyNGxdbqTN8268A13dZ3gY+VUw/ClxdZjsRTZC7ceNiy522ETWSu3HjYkqf+IiIhkjgR0Q0RAI/IqIhEvgREQ2RwI+IaIgEfkREQyTwIyIaIv3wI4ZQhlGO5UjgRwyZ2WGUZ0fWnB1GGUjox4LSpBMxZDKMcixXAj9iyGQY5ViuBH7EkOnHk5FiNCXwI4ZMhlGO5cpF24ghk2GUY7lKBb6ky4AvAuuA54GbbH93nrI/BDwDHLR9e5ntRjRdhlGO5SjbpLMHOGp7A3C0mJ/PLwJ/VHJ7ERGxTGUDfxtwoJg+AGzvVkjSPwBWAX9QcnsREbFMZdvwV9k+U0y/xEyoX0DSu4BfAT7BzHNv5yVpF7AL4MorryxZtYgYhNwFXF+LBr6kLwPv67Lqzs4Z25bkLuU+DRy2fVrSgtuyvR/YD9Bqtbq9VkTUWO4CrrdFA9/2vGflkl6WtNr2GUmrgbNdin0A+JCkTwPvAVZKes32Qu39ETGEFroLOIE/eGWbdA4BO4F9xc+H5xaw/a9mpyXdCrQS9jEM0jTRu9wFXG9lA38f8ICkTwLfAW4CkNQCbrP9qZKvHzEQaZpYnjXjY0x1CfcydwHng7c6pXrp2H7F9vW2N9jeYvvVYnm7W9jb/u30wY9hkAHKlqfqu4BnP3inzp3HvP3Be/D4VAW1bZ4MrRDRRZomlmf75kn27tjE5PgYAibHx9i7Y9Oyz8jzwVutDK0Q0cXFaJpoiirvAs4Hb7Vyhh/RRQYoq4eMDFqtBH5EF1U3TcTy5IO3WmnSiZhHBigbvIwMWq0EfkTUWj54q5MmnYiIhkjgR0Q0RAI/IqIhEvgREQ2RwI+IaAjZ9Rx2XtI0MwOyLdflwJ9VVJ1ByT7UQ/ahHrIPS/N+2xPdVtQ28MuS1LbdGnQ9ysg+1EP2oR6yD+WlSScioiES+BERDTHKgb9/0BWoQPahHrIP9ZB9KGlk2/AjIuJCo3yGHxERHRL4ERENMXKBL+kGSSclnZK0Z9D1WQ5Jz0s6IelJSe1B12epJN0n6aykb3Ysu0zSo5KeLX5eOsg6Lmaeffh5SVPF8XhS0k8Pso4LkbRW0lckPSPpaUmfKZYPzXFYYB+G5jgASPpbkv6fpG8U+/ELxfL1kh4rMuqLklb2rU6j1IYvaQXwbeCjwGngceAW288MtGI9kvQ80LI9VDeZSPow8BrwO7Z/rFj2eeBV2/uKD+BLbX9ukPVcyDz78PPAa7Z/eZB1WwpJq4HVtr8u6b3AE8B24FaG5DgssA83MSTHAUCSgHfbfk3SJcBXgc8AnwUesn2/pN8AvmH71/tRp1E7w78WOGX7OduvA/cD2wZcp8aw/UfAq3MWbwMOFNMHmHnj1tY8+zA0bJ+x/fVi+i+BbwGTDNFxWGAfhopnvFbMXlL8M/BTwIPF8r4ei1EL/EnghY750wzhHwozfxR/IOkJSbsGXZmSVtk+U0y/BKwaZGVKuF3SU0WTT22bQzpJWgdsBh5jSI/DnH2AITsOklZIehI4CzwK/AlwzvabRZG+ZtSoBf6o+KDtHwduBH6uaGYYep5pPxzGNsRfB34EuAY4A/zKQGuzBJLeA/w+8O9s/0XnumE5Dl32YeiOg+23bF8DXMFMC8TfG2R9Ri3wp4C1HfNXFMuGiu2p4udZ4EvM/KEMq5eLNtnZttmzA65Pz2y/XLxxvwf8N2p+PIr24t8H/ofth4rFQ3Ucuu3DsB2HTrbPAV8BPgCMS5p9vGxfM2rUAv9xYENxFXwlcDNwaMB16omkdxcXqpD0buAfA99c+H/V2iFgZzG9E3h4gHVZltmgLPwMNT4exYXC3wK+ZftXO1YNzXGYbx+G6TgASJqQNF5MjzHTmeRbzAT/x4tifT0WI9VLB6DoqvVrwArgPtv/ebA16o2kv8PMWT3MPGT+C8OyD5L+J/ARZoaAfRn4T8BB4AHgSmaGu77Jdm0vis6zDx9hphnBwPPAv+1oD68VSR8E/hg4AXyvWPwfmGkDH4rjsMA+3MKQHAcASVczc1F2BTMn1w/Yvrt4j98PXAYcBz5h+2/6UqdRC/yIiOhu1Jp0IiJiHgn8iIiGSOBHRDREAj8ioiES+BERDZHAj4hoiAR+RERD/H9fZpLQkd+UGwAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "plt.plot(correlation_coef_objects_objects, 'o')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 104,
   "id": "d35a9d1f",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "32"
      ]
     },
     "execution_count": 104,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "len(correlation_coef_objects_objects)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "712fae75",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b5f251d9",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "2ede40fa",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "54be8b59",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 108,
   "id": "0403de67",
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "83\n",
      "75\n",
      "17\n",
      "46\n",
      "44\n",
      "16\n",
      "34\n",
      "74\n",
      "08\n",
      "04\n",
      "26\n",
      "53\n",
      "15\n",
      "78\n",
      "59\n",
      "81\n",
      "57\n",
      "48\n",
      "20\n",
      "39\n",
      "37\n",
      "42\n",
      "80\n",
      "22\n",
      "12\n",
      "06\n",
      "10\n",
      "64\n",
      "13\n",
      "72\n",
      "43\n",
      "56\n"
     ]
    }
   ],
   "source": [
    "dg_pareidolia = []\n",
    "eg_pareidolia = []\n",
    "ke = []\n",
    "correlation_coef_pareidolia_faces = []\n",
    "\n",
    "for k in x:\n",
    "    if k in x_loaded_faces:\n",
    "        print(k)\n",
    "        ke.append(k)\n",
    "        # print(np.shape(x[k]))\n",
    "        # print(y_faces[k])\n",
    "        # dg_pareidolia.append(scaler.fit_transform(np.array(x[k])).flatten())\n",
    "        # eg_pareidolia.append(scaler.fit_transform(np.array(y_pareidolia[k]['a'])).flatten())\n",
    "        correlation_coef_pareidolia_faces.append(spearmanr(np.array(x[k]).flatten(), \n",
    "                                           np.array(x_loaded_faces[k]).flatten())[0])\n",
    "        \n",
    "    #break\n",
    "\n",
    "# correlation_coef, p_value = spearmanr(np.array(dg_pareidolia).flatten(), np.array(eg_pareidolia).flatten())\n",
    "# correlation_coef = np.corrcoef(a, b)\n",
    "# print(\"Correlation coefficient:\", correlation_coef)\n",
    "# print(\"p-value:\", p_value)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 109,
   "id": "14e6d358",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "0.21737735199572072"
      ]
     },
     "execution_count": 109,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "np.mean(correlation_coef_pareidolia_faces)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 110,
   "id": "30812b76",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "0.20913369408513166"
      ]
     },
     "execution_count": 110,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "np.std(correlation_coef_pareidolia_faces)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 111,
   "id": "ab74cd89",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[<matplotlib.lines.Line2D at 0x7f58817fe760>]"
      ]
     },
     "execution_count": 111,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAD4CAYAAADvsV2wAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAS5UlEQVR4nO3db4xcV3nH8e/DxmlXQLvQuCHeJLULxhUlVYxWQVUQigrBoS9iN6UhqVCDCnVVNRIVlVWnSJSmQjG4pfRFRBsgUgqlgYIxK4XKpYSqf0RSbzBgksjEpNB4E2Lzx7QRC0nM0xc7TsfL7Hp2587ce+d8PxLKzp3L3nN1Pb85+5xzz43MRJI0/p5VdwMkSaNh4EtSIQx8SSqEgS9JhTDwJakQ59TdgOWcd955uXHjxrqbIUmtct99930rM9f3eq+xgb9x40bm5ubqboYktUpEfGO59yzpSFIhDHxJKoSBL0mFMPAlqRAGviQVorGzdKQS7T80z94DR3j05AIbpibZtW0LO7ZO190sjQkDX2qI/YfmuWnfYRaeOgXA/MkFbtp3GMDQVyUs6UgNsffAkWfC/rSFp06x98CRmlqkcWPgSw3x6MmFVW2XVsvAlxpiw9TkqrZLq2XgSw2xa9sWJtdNnLFtct0Eu7ZtqalFGjcO2koNcXpg1lk6Z3LmUnUMfKlBdmydNsy6OHOpWpZ0JDWWM5eqZeBLaixnLlXLwJfUWM5cqpaBL6mxnLlULQdtJTWWM5eqZeBLajRnLlXHko4kFaKSwI+IqyLiSEQcjYjdy+xzbUQ8EBH3R8RHqjjusO0/NM/le+5m0+67uHzP3ew/NF93kyRpzQYu6UTEBHArcCVwDDgYEbOZ+UDXPpuBm4DLM/O7EfGzgx532LzhQ9K4qaKHfxlwNDMfzswngTuB7Uv2+R3g1sz8LkBmHq/guEPlDR+Sxk0VgT8NPNL1+lhnW7cXAy+OiP+IiHsi4qpevygidkbEXETMnThxooKmrZ03fEgaN6MatD0H2AxcAVwPvD8ippbulJm3ZeZMZs6sX79+RE3rzRs+JI2bKgJ/Hrio6/WFnW3djgGzmflUZv4X8FUWvwAayxs+JI2bKgL/ILA5IjZFxLnAdcDskn32s9i7JyLOY7HE83AFxx6aHVunueWaS5iemiSA6alJbrnmEgdsJbXWwLN0MvPpiLgROABMALdn5v0RcTMwl5mznfdeExEPAKeAXZn57UGPPWze8CFpnERm1t2GnmZmZnJubq7uZkhSq0TEfZk50+s977SVpEIY+JJUCANfkgph4EtSIQx8SSqEgS9JhTDwJakQBr4kFcLAl6RCGPiSVAgDX5IKYeBLUiEMfEkqhIEvSYUw8CWpEAa+JBXCwJekQhj4klQIA1+SCmHgS1IhDHxJKoSBL0mFOKfuBkjSuNt/aJ69B47w6MkFNkxNsmvbFnZsnR55Owx8SRqi/YfmuWnfYRaeOgXA/MkFbtp3GGDkoW9JR5KGaO+BI8+E/WkLT51i74EjI2+LgS9JQ/ToyYVVbR8mA1+ShmjD1OSqtg+TgS9JQ7Rr2xYm102csW1y3QS7tm0ZeVsctJWkITo9MOssHUkqwI6t07UE/FKWdCSpEAa+JBXCwJekQhj4klQIA1+SClFJ4EfEVRFxJCKORsTuFfb79YjIiJip4riSpP4NPC0zIiaAW4ErgWPAwYiYzcwHluz3XOAtwL2DHlNSPZqy6qPWpooe/mXA0cx8ODOfBO4EtvfY78+AdwE/qOCYkkbs9KqP8ycXSP5/1cf9h+brbpr6VEXgTwOPdL0+1tn2jIh4GXBRZt610i+KiJ0RMRcRcydOnKigaZKq0qRVH7U2Qx+0jYhnAe8B/vBs+2bmbZk5k5kz69evH3bTJK1Ck1Z91NpUsbTCPHBR1+sLO9tOey7wUuBfIgLgBcBsRFydmXMVHF/SCGyYmmS+R7jXserjuBr2GEkVPfyDwOaI2BQR5wLXAbOn38zM72XmeZm5MTM3AvcAhr3UMk1a9XEcjWKMZODAz8yngRuBA8CDwMcy8/6IuDkirh7090tqhh1bp7nlmkuYnpokgOmpSW655hJn6VRkFGMklayWmZmfBj69ZNvbl9n3iiqOKWn0mrLq4zgaxRiJyyNLI+Icdq1kFGMkLq0wQvsPzXP5nrvZtPsuLt9zt/OXC+Icdp3NKMZI7OGPyOkP/Oka3ekPPGAvr+X66bmvVJ/1+gtG82QsA39E/MCPp36/yJ3Drn4Me4zEks6IDOMDb4mofv3OrFiuDuscdo2SgT8iVX/grQk3Q79f5M5hVxMY+CNS9QfedU2aod8vcuewqwms4Y9I1QMy1oSbYde2LWfU8GH5L3LnsKtuBv4IVfmBd12TZhjFzAqpKgZ+S62mZ6nhsueutjDwW8qepaTVMvBbzJ6lpNVwlo4kFcLAl6RCGPiSVAhr+FoVl/iV2svAV99c8VNqN0s66pvLOUjtZuCrby7nILWbga++ucSv1G4GvvrmEr9SuzloK6C/2Tcu5yC1m4GvVc2+qXo5B6d5SqNj4Ku25+32+0Xjl4JUDWv4qm32TT/TPH2Uo1QdA1+1zb7p54vGuf9SdQx81Tb7pp8vGuf+S9Ux8FXbA7b7+aJx7r9UHQdtBdTzMJV+pnn6KEepOgZ+BZxFsnZn+6Jx7r9UHQN/QK4gOXw+ynH47LSUwRr+gJxForZz6ms57OEPyFkkars6b7zzr4rRsoc/IGeRqO3q6LT4V0U9DPwBuYKk2q6OToul0HoY+AOqaw67VJU6Oi2WQutRSQ0/Iq4C/gqYAD6QmXuWvP9W4M3A08AJ4Lcz8xtVHLsJnEWiNqtj6uuGqUnme4S7pdDhGjjwI2ICuBW4EjgGHIyI2cx8oGu3Q8BMZn4/In4PeDfw+kGP3YsDQeXy2q/dqDst3lBXjyp6+JcBRzPzYYCIuBPYDjwT+Jn5ua797wHeUMFxf4xz4svltW8Xb6irRxWBPw080vX6GPDyFfZ/E/CPvd6IiJ3AToCLL7541Q2pa3qZ6ue1bx9LoaM30kHbiHgDMAPs7fV+Zt6WmTOZObN+/fpV/34HgsrltZfOrorAnwcu6np9YWfbGSLi1cDbgKsz84cVHPfHOCe+XF576eyqCPyDwOaI2BQR5wLXAbPdO0TEVuBvWAz74xUcsyfnxJfLay+d3cA1/Mx8OiJuBA6wOC3z9sy8PyJuBuYyc5bFEs5zgH+ICID/zsyrBz32Ug4ElctrL51dZGbdbehpZmYm5+bm6m6GJLVKRNyXmTO93nPxNBXH+foqlYGvojhfXyVzLR0VxUW7VLIie/j+SV8u5+urZMX18F2Hu2zO11fJigt8/6Qvm/P1VbLiSjr+SV825+urZMUFfhvW4XaMYbhctEulKq6k0/Q/6R1jkDQsxQV+0x9J6BiDpGEprqQDzf6T3jEGScNSXA+/6Zw2KGlYDPyGafoYg6T2KrKk02ROG5Q0LAZ+AzV5jEFqu5KnPRv4kopR+mqpBr6GouRelJprpWnPJfz7NPBVudJ7UWqu0qc9O0tHlfPmMTXVaqY97z80z+V77mbT7ru4fM/dY3G3u4GvypXei1Jz9TvteVyXODHwVTlvHlNT9bu0yrj+lWoNX5XbtW3LGTV88OYxNUc/057H9a9UA1+VG5ebx5xpVK42LKO+Fga+hqLtN48506hs4/pXqjV8qYdxreGqP01fRn2t7OFLPYxrDVf9a/tfqb3Yw5d6cKaRxpGBL/XgMtUaR5Z0pB7GZaaR1M3Al5YxjjVclc2SjiQVwsCXpEIY+JJUCANfkgph4EtSISoJ/Ii4KiKORMTRiNjd4/2fiIiPdt6/NyI2VnFcSVL/Bg78iJgAbgVeC7wEuD4iXrJktzcB383MFwF/Cbxr0ONKklanih7+ZcDRzHw4M58E7gS2L9lnO3BH5+ePA6+KiKjg2JKkPlVx49U08EjX62PAy5fbJzOfjojvAT8DfKt7p4jYCewEuPjiiytomiQNT9uemdCoQdvMvC0zZzJzZv369XU3R5KW1cbn3lYR+PPARV2vL+xs67lPRJwD/DTw7QqOLUm1aOMzE6oo6RwENkfEJhaD/TrgN5fsMwvcAHweeB1wd2ZmBceWJGD05ZU2PjNh4MDv1ORvBA4AE8DtmXl/RNwMzGXmLPBB4EMRcRT4DotfCpJUiToeSdnG595WUsPPzE9n5osz84WZ+c7Otrd3wp7M/EFm/kZmvigzL8vMh6s4riRBPeWVNj4zweWRJbVeHeWVNj4zwcCX1Hp1lVfa9syERk3LlKS1aGN5pQ728CW1XhvLK3Uw8CWNhbaVV+pgSUeSCmHgS1IhLOlILdS2RbvUDAa+1DJ13FWq8WDgjzl7guNnpbtKvbZaiYE/xuwJjqc2LtqlZnDQdoy1cflWnd1yd482edEuNYOBP8bsCY4n7yrVWlnSGWNtXL5VZ7eau0odw1E3A3+M7dq25YwaPtgTHBf93FXqGI6WsqQzxnZsneaWay5hemqSAKanJrnlmkv8sBfCMRwtZQ9/zLm+SLkcw9FS9vClMeVsHi1l4Etjytk8WsqSjjSmXCNeSxn40hhzDEfdLOlIUiEMfEkqhIEvSYUw8CWpEAa+JBXCwJekQhj4klQIA1+SCmHgS1IhDHxJKoSBL0mFMPAlqRAGviQVwsCXpEIY+JJUiIECPyKeHxGfiYiHOv99Xo99Lo2Iz0fE/RHx5Yh4/SDHlCStzaA9/N3AZzNzM/DZzuulvg/8Vmb+InAV8N6ImBrwuJKkVRo08LcDd3R+vgPYsXSHzPxqZj7U+flR4DiwfsDjSpJWadDAPz8zH+v8/E3g/JV2jojLgHOBry3z/s6ImIuIuRMnTgzYNElSt7M+0zYi/hl4QY+33tb9IjMzInKF33MB8CHghsz8Ua99MvM24DaAmZmZZX+XJGn1zhr4mfnq5d6LiMcj4oLMfKwT6MeX2e+ngLuAt2XmPWturaTG239onr0HjvDoyQU2TE2ya9sWH6TeEIOWdGaBGzo/3wB8aukOEXEu8EngbzPz4wMeT1KD7T80z037DjN/coEE5k8ucNO+w+w/NF9308Tggb8HuDIiHgJe3XlNRMxExAc6+1wLvBJ4Y0R8sfO/Swc8rqQG2nvgCAtPnTpj28JTp9h74EhNLVK3s5Z0VpKZ3wZe1WP7HPDmzs8fBj48yHEktcOjJxdWtV2j5Z22kiqzYWpyVds1Wga+pMrs2raFyXUTZ2ybXDfBrm1bamqRug1U0pGkbqdn4zhLp5kMfEmV2rF12oBvKEs6klQIA1+SCmHgS1IhDHxJKoSBL0mFiMxmLkoZESeAbwzwK84DvlVRc+riOTSD59AMnkN/fi4zez5zpLGBP6iImMvMmbrbMQjPoRk8h2bwHAZnSUeSCmHgS1Ihxjnwb6u7ARXwHJrBc2gGz2FAY1vDlySdaZx7+JKkLga+JBVi7AI/Iq6KiCMRcTQidtfdnrWIiK9HxOHO4yDn6m5PvyLi9og4HhFf6dr2/Ij4TEQ81Pnv8+ps49kscw7viIj5rkd0/mqdbVxJRFwUEZ+LiAci4v6IeEtne2uuwwrn0JrrABARPxkR/xkRX+qcx592tm+KiHs7GfXRznO/R9OmcarhR8QE8FXgSuAYcBC4PjMfqLVhqxQRXwdmMrNVN5lExCuBJ1h8YP1LO9veDXwnM/d0voCfl5l/VGc7V7LMObwDeCIz/7zOtvUjIi4ALsjML0TEc4H7gB3AG2nJdVjhHK6lJdcBICICeHZmPhER64B/B94CvBXYl5l3RsRfA1/KzPeNok3j1sO/DDiamQ9n5pPAncD2mttUjMz8V+A7SzZvB+7o/HwHix/cxlrmHFojMx/LzC90fv5f4EFgmhZdhxXOoVVy0ROdl+s6/0vgV4CPd7aP9FqMW+BPA490vT5GC/+hsPiP4p8i4r6I2Fl3YwZ0fmY+1vn5m8D5dTZmADdGxJc7JZ/GlkO6RcRGYCtwLy29DkvOAVp2HSJiIiK+CBwHPgN8DTiZmU93dhlpRo1b4I+LV2Tmy4DXAr/fKTO0Xi7WD9tYQ3wf8ELgUuAx4C9qbU0fIuI5wCeAP8jM/+l+ry3Xocc5tO46ZOapzLwUuJDFCsQv1NmecQv8eeCirtcXdra1SmbOd/57HPgki/9Q2urxTk32dG32eM3tWbXMfLzzwf0R8H4afj069eJPAH+Xmfs6m1t1HXqdQ9uuQ7fMPAl8DvhlYCoiTj9edqQZNW6BfxDY3BkFPxe4DpituU2rEhHP7gxUERHPBl4DfGXl/1ejzQI3dH6+AfhUjW1Zk9NB2fFrNPh6dAYKPwg8mJnv6XqrNddhuXNo03UAiIj1ETHV+XmSxckkD7IY/K/r7DbSazFWs3QAOlO13gtMALdn5jvrbdHqRMTPs9irh8WHzH+kLecQEX8PXMHiErCPA38C7Ac+BlzM4nLX12ZmYwdFlzmHK1gsIyTwdeB3u+rhjRIRrwD+DTgM/Kiz+Y9ZrIG34jqscA7X05LrABARv8TioOwEi53rj2XmzZ3P+J3A84FDwBsy84cjadO4Bb4kqbdxK+lIkpZh4EtSIQx8SSqEgS9JhTDwJakQBr4kFcLAl6RC/B+t6Aj20N3R5AAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "plt.plot(correlation_coef_pareidolia_faces, 'o')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 112,
   "id": "c4980b11",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "32"
      ]
     },
     "execution_count": 112,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "len(correlation_coef_pareidolia_faces)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "10f01cdd",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "bee591b3",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 113,
   "id": "ba2df80c",
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "83\n",
      "75\n",
      "17\n",
      "46\n",
      "44\n",
      "16\n",
      "34\n",
      "74\n",
      "08\n",
      "04\n",
      "26\n",
      "53\n",
      "15\n",
      "78\n",
      "59\n",
      "81\n",
      "57\n",
      "48\n",
      "20\n",
      "39\n",
      "37\n",
      "42\n",
      "80\n",
      "22\n",
      "12\n",
      "06\n",
      "10\n",
      "64\n",
      "13\n",
      "72\n",
      "43\n",
      "56\n"
     ]
    }
   ],
   "source": [
    "dg_pareidolia = []\n",
    "eg_pareidolia = []\n",
    "ke = []\n",
    "correlation_coef_pareidolia_objects = []\n",
    "\n",
    "for k in x:\n",
    "    if k in x_loaded_objects:\n",
    "        print(k)\n",
    "        ke.append(k)\n",
    "        # print(np.shape(x[k]))\n",
    "        # print(y_faces[k])\n",
    "        # dg_pareidolia.append(scaler.fit_transform(np.array(x[k])).flatten())\n",
    "        # eg_pareidolia.append(scaler.fit_transform(np.array(y_pareidolia[k]['a'])).flatten())\n",
    "        correlation_coef_pareidolia_objects.append(spearmanr(np.array(x[k]).flatten(), \n",
    "                                           np.array(x_loaded_objects[k]).flatten())[0])\n",
    "        \n",
    "    #break\n",
    "\n",
    "# correlation_coef, p_value = spearmanr(np.array(dg_pareidolia).flatten(), np.array(eg_pareidolia).flatten())\n",
    "# correlation_coef = np.corrcoef(a, b)\n",
    "# print(\"Correlation coefficient:\", correlation_coef)\n",
    "# print(\"p-value:\", p_value)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 114,
   "id": "564a6ac7",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "-0.2173765771002782"
      ]
     },
     "execution_count": 114,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "np.mean(correlation_coef_pareidolia_objects)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 115,
   "id": "da243e39",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "0.20913465209534957"
      ]
     },
     "execution_count": 115,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "np.std(correlation_coef_pareidolia_objects)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 116,
   "id": "e9ba6edd",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[<matplotlib.lines.Line2D at 0x7f5881815400>]"
      ]
     },
     "execution_count": 116,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAD4CAYAAADvsV2wAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAATGElEQVR4nO3dfYwd1X3G8efJYrer0HR5WVn2QmLSUrc0jnB6ixSRpFGAmuSP2EUpARUVKpAbpUiporgxjZSmqSrcbFPxR6O0bhLJeWkJJa5xBakLhipt1VCus07MixwcRITXxt5Atq2VbQDz6x87m16v7u7e3Zl75+V8P9Jq7507u3OGWT+c+c2ZM44IAQCa7zVlNwAAMBgEPgAkgsAHgEQQ+ACQCAIfABJxTtkNWMiFF14Y69evL7sZAFArBw8e/EFEjHb7rLKBv379erXb7bKbAQC1Yvv7C31GSQcAEkHgA0AiCHwASASBDwCJIPABIBGVHaUDoJ72TkxqfP8RHZ+e0bqRYW3fvEFbN42V3SyIwAdQoL0Tk7pjz2HNvHxGkjQ5PaM79hyWJEK/AijpACjM+P4jPwn7OTMvn9H4/iMltQidCHwAhTk+PbOs5RgsAh9AYdaNDC9rOQarkMC3fa3tI7aP2t7R5fMP237S9ndsH7D9hiK2C6Batm/eoOFVQ2ctG141pO2bN5TUInTKHfi2hyR9RtK7JV0m6Ubbl81bbUJSKyLeLOleSZ/Ku10A1bN105juvG6jxkaGZUljI8O687qNXLCtiCJG6Vwh6WhEPCNJtu+WtEXSk3MrRMQjHet/U9JNBWwXQAVt3TRGwFdUESWdMUnPdbw/li1byK2Svt7tA9vbbLdtt6empgpoGgBgzkAv2tq+SVJL0ni3zyNiV0S0IqI1Otp1OmcAwAoVUdKZlHRxx/uLsmVnsX21pI9J+rWI+HEB2wUALEMRPfzHJF1q+xLbqyXdIGlf5wq2N0n6a0nvjYhTBWwTALBMuQM/Il6RdLuk/ZKeknRPRDxh+5O235utNi7pXEl/b/uQ7X0L/DoAQJ8UMpdORDwg6YF5yz7e8frqIrYDAFg57rQFgEQQ+ACQCAIfABJB4ANAIgh8AEgEgQ8AiSDwASARBD4AJILAB4BEEPgAkAgCHwASQeADQCIIfABIBIEPAIkoZHpkANW0d2JS4/uP6Pj0jNaNDGv75g08YDxhBD7QUHsnJnXHnsOaefmMJGlyekZ37DksSYR+oijpAA01vv/IT8J+zszLZzS+/0hJLULZCHygoY5PzyxrOZqPkk7DUcNN17qRYU12Cfd1I8MltAZVQA+/weZquJPTMwr9fw1378Rk2U3DAGzfvEHDq4bOWja8akjbN28oqUUoGz38Blushksvv956OXObe88ZHuYQ+A1GDbeZljP6ZuumMQIeP0FJp8EWqtVSw603Rt9gpQj8BqOG20ycuWGlCPwG27ppTHdet1FjI8OypLGRYd153UZO8WuOMzesFDX8hqOG2zzbN284q4YvceaG3hD4QM0w+gYrReADNcSZG1aCGj4AJILAB4BEUNIB0AjMG7U0Ah9A7TH3f28o6QCoPe4+7g09fAC1V9bdx3UrI9HDB1B7Zdx9XMfpxwl8ALVXxrxRdSwjFRL4tq+1fcT2Uds7unz+U7a/mn3+qO31RWwXAKRy5o2q4yR2uWv4tockfUbSNZKOSXrM9r6IeLJjtVsl/TAift72DZL+TNL7824bAOYM+u7jOj5Csoge/hWSjkbEMxHxkqS7JW2Zt84WSbuz1/dKusq2C9g2AJSijtOPFxH4Y5Ke63h/LFvWdZ2IeEXSf0m6YP4vsr3Ndtt2e2pqqoCmAUB/1HH68UoNy4yIXZJ2SVKr1YqSmwMAi6rbJHZF9PAnJV3c8f6ibFnXdWyfI+lnJb1QwLYBAD0qIvAfk3Sp7Utsr5Z0g6R989bZJ+nm7PX7JD0cEfTgAWCAcpd0IuIV27dL2i9pSNIXIuIJ25+U1I6IfZI+L+lLto9KelGz/1MAAAxQITX8iHhA0gPzln284/X/SvrNIrYFAFgZ7rQFgEQQ+ACQCAIfABJB4ANAIgh8AEhEpe60Baqkbg+3AJZC4ANd8IxUNBElHaCLOj7cAlgKPXygizo+3ALFamJJjx4+0EUZz0hFddTxebW9IPCBLur4cAsUp6klPUo66Iu6nw7PtbXO+4CVa2pJj8BH4ZoywqVuD7dAb3rpjNTxebW9oKSDwjX1dBj112ttvqklPQIfhWvq6TDqr9fOSB2fV9sLSjooXFNPh1F/y+mMNLGkRw8fhWvq6TDqL/XhtgQ+CtfU02HUX+qdEUo66Ismng6j/lIfbkvgV1Ddx7ADVZZyZ4TAr5imjGEHUD3U8CuGMewA+oXArxjGsAPolyRLOlWukTOGHUC/JNfDr/q0p6kPGwPQP8kFftVr5IxhB9AvyZV06lAjT3nY2CBUuaQH9FNyPfzUb61OXdVLekA/JRf41MjTVvWSHtBPyZV0Ur+1OnV1KOkB/ZJc4EvUyFPGsFekLLmSDtJGSQ8pS7KHj3RR0kPKCHwkh5IeUtW4wGeMdbo49sDictXwbZ9v+0HbT2ffz+uyzuW2/8P2E7a/Y/v9eba5GMZYp4tjDywt70XbHZIORMSlkg5k7+f7kaTfjohflnStpLtsj+TcbleMsU4Xxx5YWt7A3yJpd/Z6t6St81eIiO9GxNPZ6+OSTkkazbndrhhjnS6OPbC0vIG/JiJOZK+fl7RmsZVtXyFptaTvLfD5Nttt2+2pqallN4ZpE9LFsQeWtmTg237I9uNdvrZ0rhcRISkW+T1rJX1J0u9ExKvd1omIXRHRiojW6OjyTwIYY50ujn397J2Y1JU7H9YlO+7XlTsf5nrLACw5Sicirl7oM9snba+NiBNZoJ9aYL3XSbpf0sci4psrbu0SGGOdLo59vfDs5nJ4tmO+wh+2xyW9EBE7be+QdH5E/MG8dVZL+rqkf4yIu3r93a1WK9rt9orbBqB3gx7SeuXOh7tOcTE2Mqx/3/Guvm03BbYPRkSr22d5x+HvlHSP7VslfV/S9dkGW5I+EBG3ZcveIekC27dkP3dLRBzKue3KYPw36qyM3jYX2cuRK/Aj4gVJV3VZ3pZ0W/b6y5K+nGc7VcapKepusSGt/fobZhK7cjB5Wk6M/0bdldHb5iJ7OQj8nDg1Rd2VMaSVZzeXo3Fz6Qwap6aou+2bN5xVlpQG09tmErvBo4efE6emqDt62+mgh58T47/RBPS200DgF4B/LCvXy5BWhr0CxSDwIamcUO1lSCvDXoHiUMNHaXPJ9zKklWGvQHEIfJQWqr0MaWXYK1AcAh+lhWov47+Z9hgoDoGP0kK1lyGtDHsFikPgo7RQ7WX8N2PEgeLkmh65n5geebB6HaXDEEmg2vo5PTIaopd7CRgiCdQbJR30jCGSQL0R+OgZQySBeiPw0TOGSAL1RuCjZwyRBOqNi7boGTODAvVG4GNZmBkUqC9KOgCQCAIfABJB4ANAIqjh1xjTHABYDgK/ppjmAMByUdKpKaY5ALBc9PBrimkOqoPSGuqCwB+gIoNh3ciwJruEO9McDNZySmv8jwFlo6QzIEU/KJxpDqqh19JaWQ+KBzoR+ANSdM2dJ0FVQ6+lNa65oAoo6QxIP2ruTHNQvl5La1xzQRXQwx8QphZupl5Laxx/9GLvxKSu3PmwLtlxv67c+XDhJT8Cf0CouTdTr6U1jj+WMojrPJR0BoSphZurl9Iaxx9LWew6T1F/JwT+AFFzTxvHH4sZxHUeAh9Az7iXoH8GcW9Nrhq+7fNtP2j76ez7eYus+zrbx2z/ZZ5tAigH9xL01yCu8+S9aLtD0oGIuFTSgez9Qv5E0jdybg9ASbiXoL8GcW9N3pLOFknvzF7vlvQvkj46fyXbvyJpjaR/ktTKuU0AJeBegv7r93WevD38NRFxInv9vGZD/Sy2XyPp05I+stQvs73Ndtt2e2pqKmfTABSJewnqb8nAt/2Q7ce7fG3pXC8iQlJ0+RUflPRARBxbalsRsSsiWhHRGh0d7XknAPQf9xLU35IlnYi4eqHPbJ+0vTYiTtheK+lUl9XeKunttj8o6VxJq22fjojF6v0AKoZ7Ceovbw1/n6SbJe3Mvt83f4WI+K2517ZvkdQi7IF64l6Cestbw98p6RrbT0u6Onsv2y3bn8vbOABAcTxbeq+eVqsV7Xa77GYAQK3YPhgRXUdDMnkaACSCwAeARBD4AJAIAh8AEkHgA0AimB4ZAPqsKtNKE/gA0Edz00rPzTQ6N620pIGHPiUdAOijKk0rTeADQB9VaVppAh8A+qhK00oT+ADQR1WaVpqLtgDQR1WaVprAB4A+q8q00pR0ACARBD4AJILAB4BEEPgAkAgCHwASQeADQCIIfABIBIEPAIkg8AEgEQQ+ACSCwAeARBD4AJAIAh8AEkHgA0AiCHwASASBDwCJIPABIBEEPgAkgsAHgEQQ+ACQCAIfABJB4ANAIs7J88O2z5f0VUnrJT0r6fqI+GGX9V4v6XOSLpYUkt4TEc/m2fYg7J2Y1Pj+Izo+PaN1I8PavnmDtm4aK7tZALAieXv4OyQdiIhLJR3I3nfzRUnjEfFLkq6QdCrndvtu78Sk7thzWJPTMwpJk9MzumPPYe2dmCy7aQCwInkDf4uk3dnr3ZK2zl/B9mWSzomIByUpIk5HxI9ybrfvxvcf0czLZ85aNvPyGY3vP1JSiwAgn7yBvyYiTmSvn5e0pss6vyBp2vYe2xO2x20PdftltrfZbttuT01N5WxaPsenZ5a1HACqbsnAt/2Q7ce7fG3pXC8iQrP1+fnOkfR2SR+R9KuS3ijplm7biohdEdGKiNbo6Ohy96VQ60aGl7UcAKpuycCPiKsj4k1dvu6TdNL2WknKvnerzR+TdCginomIVyTtlfSWAvehL7Zv3qDhVWefiAyvGtL2zRtKahEA5JO3pLNP0s3Z65sl3ddlncckjdie67K/S9KTObfbd1s3jenO6zZqbGRYljQ2Mqw7r9vIKB0AteXZSswKf9i+QNI9kl4v6fuaHZb5ou2WpA9ExG3ZetdI+rQkSzooaVtEvLTY7261WtFut1fcNgBIke2DEdHq9lmucfgR8YKkq7osb0u6reP9g5LenGdbAIB8cgU+APQbN0AWh8AHUFlzN0DO3RMzdwOkJEJ/BZhLB0BlcQNksQh8AJXFDZDFIvABVBY3QBaLwAdQWdwAWSwu2gIVwoiUs83tO/9NikHgAxXBiJTutm4aS3r/i0RJB6gIRqSg3wh8oCIYkYJ+I/CBimBECvqNwAcqghEp6Dcu2gIVwYgU9BuBD1QII1LQT5R0ACARBD4AJILAB4BEEPgAkAgCHwASkesh5v1ke0qzD0ZfqQsl/aCg5pSFfagG9qEa2IfevCEiRrt9UNnAz8t2e6Ent9cF+1AN7EM1sA/5UdIBgEQQ+ACQiCYH/q6yG1AA9qEa2IdqYB9yamwNHwBwtib38AEAHQh8AEhE4wLf9rW2j9g+antH2e1ZCdvP2j5s+5Dtdtnt6ZXtL9g+ZfvxjmXn237Q9tPZ9/PKbONSFtiHT9iezI7HIdvvKbONi7F9se1HbD9p+wnbH8qW1+Y4LLIPtTkOkmT7p23/p+1vZ/vxx9nyS2w/mmXUV22vHlibmlTDtz0k6buSrpF0TNJjkm6MiCdLbdgy2X5WUisianWTie13SDot6YsR8aZs2ackvRgRO7P/AZ8XER8ts52LWWAfPiHpdET8eZlt64XttZLWRsS3bP+MpIOStkq6RTU5Dovsw/WqyXGQJNuW9NqIOG17laR/k/QhSR+WtCci7rb9V5K+HRGfHUSbmtbDv0LS0Yh4JiJeknS3pC0ltykZEfENSS/OW7xF0u7s9W7N/sOtrAX2oTYi4kREfCt7/T+SnpI0phodh0X2oVZi1uns7arsKyS9S9K92fKBHoumBf6YpOc63h9TDf9QNPtH8c+2D9reVnZjcloTESey189LWlNmY3K43fZ3spJPZcshnWyvl7RJ0qOq6XGYtw9SzY6D7SHbhySdkvSgpO9Jmo6IV7JVBppRTQv8pnhbRLxF0rsl/V5WZqi9mK0f1rGG+FlJPyfpckknJH261Nb0wPa5kr4m6fcj4r87P6vLceiyD7U7DhFxJiIul3SRZisQv1hme5oW+JOSLu54f1G2rFYiYjL7fkrSP2j2D6WuTmY12bna7KmS27NsEXEy+4f7qqS/UcWPR1Yv/pqkr0TEnmxxrY5Dt32o23HoFBHTkh6R9FZJI7bnHi870IxqWuA/JunS7Cr4akk3SNpXcpuWxfZrswtVsv1aSb8u6fHFf6rS9km6OXt9s6T7SmzLiswFZeY3VOHjkV0o/LykpyLiLzo+qs1xWGgf6nQcJMn2qO2R7PWwZgeTPKXZ4H9fttpAj0WjRulIUjZU6y5JQ5K+EBF/Wm6Llsf2GzXbq5dmHzL/t3XZB9t/J+mdmp0C9qSkP5K0V9I9kl6v2emur4+Iyl4UXWAf3qnZMkJIelbS73bUwyvF9tsk/aukw5JezRb/oWZr4LU4Dovsw42qyXGQJNtv1uxF2SHNdq7viYhPZv/G75Z0vqQJSTdFxI8H0qamBT4AoLumlXQAAAsg8AEgEQQ+ACSCwAeARBD4AJAIAh8AEkHgA0Ai/g8Cvwa35UYdUgAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "plt.plot(correlation_coef_pareidolia_objects, 'o')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 117,
   "id": "75fc7143",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "32"
      ]
     },
     "execution_count": 117,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "len(correlation_coef_pareidolia_objects)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ee287087",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "0fcd6a0c",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "032ab420",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "8ea01758",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "5f6d42c1",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "051d9a43",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "98aa156c",
   "metadata": {
    "scrolled": false
   },
   "outputs": [],
   "source": [
    "import pandas as pd\n",
    "\n",
    "# Sample data with different lengths\n",
    "#correlation_coef_faces = [0.5, 0.6, 0.7]\n",
    "#correlation_coef_objects = [0.3, 0.4]\n",
    "#correlation_coef_pareidolia = [0.2, 0.3, 0.1, 0.4]\n",
    "\n",
    "# Create a DataFrame with a common index\n",
    "index = range(max(len(correlation_coef_faces), len(correlation_coef_objects), len(correlation_coef_pareidolia)))\n",
    "\n",
    "data = {\n",
    "    'sr_f': correlation_coef_faces + [None] * (len(index) - len(correlation_coef_faces)),\n",
    "    'sr_o': correlation_coef_objects + [None] * (len(index) - len(correlation_coef_objects)),\n",
    "    'sr_p': correlation_coef_pareidolia + [None] * (len(index) - len(correlation_coef_pareidolia))\n",
    "}\n",
    "\n",
    "df = pd.DataFrame(data, index=index)\n",
    "\n",
    "# Specify the file name\n",
    "csv_file = 'data.csv'\n",
    "\n",
    "# Save DataFrame to CSV file\n",
    "df.to_csv(csv_file)\n",
    "\n",
    "print(f'Data saved to {csv_file}')\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "37692ab8",
   "metadata": {},
   "outputs": [],
   "source": [
    "import csv\n",
    "\n",
    "# Sample data\n",
    "data = [\n",
    "    ['Name', 'Age', 'City'],\n",
    "    ['Alice', 28, 'New York'],\n",
    "    ['Bob', 35, 'Los Angeles'],\n",
    "    ['Charlie', 22, 'Chicago']\n",
    "]\n",
    "\n",
    "# Specify the file name\n",
    "csv_file = 'data.csv'\n",
    "\n",
    "# Write data to CSV file\n",
    "with open(csv_file, mode='w', newline='') as file:\n",
    "    writer = csv.writer(file)\n",
    "    writer.writerows(data)\n",
    "\n",
    "print(f'Data saved to {csv_file}')\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f8816fcc",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "1d73414c",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "0e53bda0",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7fe39537",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "6a51040d",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "89a93508",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c297d11a",
   "metadata": {},
   "outputs": [],
   "source": [
    "correlation_coef, p_value = spearmanr(np.array(dg_faces).flatten(), np.array(eg_faces).flatten())\n",
    "# correlation_coef = np.corrcoef(a, b)\n",
    "print(\"Correlation coefficient:\", correlation_coef)\n",
    "print(\"p-value:\", p_value)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "85e5edb2",
   "metadata": {},
   "outputs": [],
   "source": [
    "correlation_coef, p_value = spearmanr(np.array(dg_objects).flatten(), np.array(eg_objects).flatten())\n",
    "# correlation_coef = np.corrcoef(a, b)\n",
    "print(\"Correlation coefficient:\", correlation_coef)\n",
    "print(\"p-value:\", p_value)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d99c7309",
   "metadata": {},
   "outputs": [],
   "source": [
    "correlation_coef, p_value = spearmanr(np.array(dg_pareidolia).flatten(), np.array(eg_pareidolia).flatten())\n",
    "# correlation_coef = np.corrcoef(a, b)\n",
    "print(\"Correlation coefficient:\", correlation_coef)\n",
    "print(\"p-value:\", p_value)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e9702314",
   "metadata": {},
   "outputs": [],
   "source": [
    "len(dg_pareidolia)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c319f00b",
   "metadata": {},
   "outputs": [],
   "source": [
    "len(dg_faces[:83])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "1fa45e93",
   "metadata": {},
   "outputs": [],
   "source": [
    "len(dg_objects[:83])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "5e9fd2b6",
   "metadata": {},
   "outputs": [],
   "source": [
    "correlation_coef, p_value = spearmanr(np.array(dg_faces[:83]).flatten(), np.array(dg_objects[:83]).flatten())\n",
    "# correlation_coef = np.corrcoef(a, b)\n",
    "print(\"Correlation coefficient:\", correlation_coef)\n",
    "print(\"p-value:\", p_value)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a9357f4f",
   "metadata": {},
   "outputs": [],
   "source": [
    "correlation_coef, p_value = spearmanr(np.array(dg_faces[:83]).flatten(), np.array(dg_pareidolia[:83]).flatten())\n",
    "# correlation_coef = np.corrcoef(a, b)\n",
    "print(\"Correlation coefficient:\", correlation_coef)\n",
    "print(\"p-value:\", p_value)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f70021f3",
   "metadata": {},
   "outputs": [],
   "source": [
    "correlation_coef, p_value = spearmanr(np.array(dg_pareidolia[:83]).flatten(), np.array(dg_objects[:83]).flatten())\n",
    "# correlation_coef = np.corrcoef(a, b)\n",
    "print(\"Correlation coefficient:\", correlation_coef)\n",
    "print(\"p-value:\", p_value)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "0df004a4",
   "metadata": {},
   "outputs": [],
   "source": [
    "correlation_coef, p_value = spearmanr(np.array(eg_pareidolia[:83]).flatten(), np.array(eg_objects[:83]).flatten())\n",
    "# correlation_coef = np.corrcoef(a, b)\n",
    "print(\"Correlation coefficient:\", correlation_coef)\n",
    "print(\"p-value:\", p_value)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "1742ecb1",
   "metadata": {},
   "outputs": [],
   "source": [
    "correlation_coef, p_value = spearmanr(np.array(eg_pareidolia[:83]).flatten(), np.array(eg_faces[:83]).flatten())\n",
    "# correlation_coef = np.corrcoef(a, b)\n",
    "print(\"Correlation coefficient:\", correlation_coef)\n",
    "print(\"p-value:\", p_value)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "0a02bf88",
   "metadata": {},
   "outputs": [],
   "source": [
    "correlation_coef, p_value = spearmanr(np.array(eg_faces[:83]).flatten(), np.array(eg_objects[:83]).flatten())\n",
    "# correlation_coef = np.corrcoef(a, b)\n",
    "print(\"Correlation coefficient:\", correlation_coef)\n",
    "print(\"p-value:\", p_value)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b7ccd13e",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "fdeb2fc5",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7faa17c1",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f9af3d41",
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "from scipy.stats import spearmanr\n",
    "\n",
    "# Generate two arrays with random data\n",
    "array1 = np.random.rand(100)\n",
    "array2 = np.random.rand(100)\n",
    "\n",
    "# Calculate Spearman's correlation coefficient and p-value\n",
    "correlation, p_value = spearmanr(array1, array2)\n",
    "\n",
    "print(\"Spearman's correlation coefficient:\", correlation)\n",
    "print(\"p-value:\", p_value)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f7cd0d61",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3570f454",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3a0a92be",
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "from scipy.stats import pearsonr\n",
    "\n",
    "# define two eye gaze heatmaps\n",
    "heatmap1 = np.array([[0.2, 0.3, 0.1],\n",
    "                     [0.1, 0.4, 0.3],\n",
    "                     [0.3, 0.2, 0.1]])\n",
    "\n",
    "heatmap2 = np.array([[0.1, 0.2, 0.3],\n",
    "                     [0.2, 0.3, 0.2],\n",
    "                     [0.3, 0.1, 0.1]])\n",
    "\n",
    "# flatten the heatmaps into 1D arrays\n",
    "flat_heatmap1 = heatmap1.flatten()\n",
    "flat_heatmap2 = heatmap2.flatten()\n",
    "\n",
    "# calculate the Pearson correlation coefficient and p-value\n",
    "corr, p_value = pearsonr(flat_heatmap1, flat_heatmap2)\n",
    "\n",
    "print(\"Correlation coefficient:\", corr)\n",
    "print(\"p-value:\", p_value)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "98a8e3c1",
   "metadata": {},
   "outputs": [],
   "source": [
    "np.shape(b)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "55b352bd",
   "metadata": {},
   "outputs": [],
   "source": [
    "np.shape(a)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3fe648aa",
   "metadata": {},
   "outputs": [],
   "source": [
    "np.shape(correlation_coef)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "cd8e091b",
   "metadata": {},
   "outputs": [],
   "source": [
    "plt.imshow(correlation_coef)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "884bf73a",
   "metadata": {},
   "outputs": [],
   "source": [
    "correlation_coef[83:, :83]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4a540fa9",
   "metadata": {
    "scrolled": true
   },
   "outputs": [],
   "source": [
    "plt.imshow(correlation_coef[83:, :83])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "62cadea8",
   "metadata": {},
   "outputs": [],
   "source": [
    "plt.plot(np.diagonal(correlation_coef[100:, :100]), 'o') #faces"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f05bd895",
   "metadata": {},
   "outputs": [],
   "source": [
    "np.mean(np.diagonal(correlation_coef[100:, :100]))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "6e227007",
   "metadata": {},
   "outputs": [],
   "source": [
    "plt.plot(np.diagonal(correlation_coef[100:, :100]), 'o') #obj"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "12ed25e7",
   "metadata": {},
   "outputs": [],
   "source": [
    "np.mean(np.diagonal(correlation_coef[86:, :86]))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ccf0a569",
   "metadata": {},
   "outputs": [],
   "source": [
    "plt.plot(np.diagonal(correlation_coef[83:, :83]), 'o') #pare"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "923ed911",
   "metadata": {},
   "outputs": [],
   "source": [
    "np.mean(np.diagonal(correlation_coef[83:, :83]))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "27bac165",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f751bc29",
   "metadata": {},
   "outputs": [],
   "source": [
    "plt.imshow(y_objects['1153']['a'])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "0c6a4bb4",
   "metadata": {},
   "outputs": [],
   "source": [
    "y_faces"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "40a93053",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4a9b5849",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "76eee42b",
   "metadata": {},
   "outputs": [],
   "source": [
    "np.shape(imgs)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "1cc44e0e",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "1d14b8ad",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "feddeb52",
   "metadata": {},
   "outputs": [],
   "source": [
    "import matplotlib.pyplot as plt\n",
    "import numpy as np\n",
    "from scipy.misc import face\n",
    "from scipy.ndimage import zoom\n",
    "from scipy.special import logsumexp\n",
    "import torch\n",
    "\n",
    "import deepgaze_pytorch\n",
    "\n",
    "DEVICE = 'cuda'\n",
    "\n",
    "# you can use DeepGazeI or DeepGazeIIE\n",
    "model = deepgaze_pytorch.DeepGazeIII(pretrained=True).to(DEVICE)\n",
    "\n",
    "image = face()\n",
    "\n",
    "# location of previous scanpath fixations in x and y (pixel coordinates), starting with the initial fixation on the image.\n",
    "fixation_history_x = np.array([1024//2, 300, 500, 200, 200, 700])\n",
    "fixation_history_y = np.array([768//2, 300, 100, 300, 100, 500])\n",
    "\n",
    "# load precomputed centerbias log density (from MIT1003) over a 1024x1024 image\n",
    "# you can download the centerbias from https://github.com/matthias-k/DeepGaze/releases/download/v1.0.0/centerbias_mit1003.npy\n",
    "# alternatively, you can use a uniform centerbias via `centerbias_template = np.zeros((1024, 1024))`.\n",
    "centerbias_template = np.load('centerbias_mit1003.npy')\n",
    "# rescale to match image size\n",
    "centerbias = zoom(centerbias_template, (image.shape[0]/centerbias_template.shape[0], image.shape[1]/centerbias_template.shape[1]), order=0, mode='nearest')\n",
    "# renormalize log density\n",
    "centerbias -= logsumexp(centerbias)\n",
    "\n",
    "image_tensor = torch.tensor([image.transpose(2, 0, 1)]).to(DEVICE)\n",
    "centerbias_tensor = torch.tensor([centerbias]).to(DEVICE)\n",
    "x_hist_tensor = torch.tensor([fixation_history_x[model.included_fixations]]).to(DEVICE)\n",
    "y_hist_tensor = torch.tensor([fixation_history_x[model.included_fixations]]).to(DEVICE)\n",
    "\n",
    "log_density_prediction = model(image_tensor, centerbias_tensor, x_hist_tensor, y_hist_tensor)\n",
    "\n",
    "f, axs = plt.subplots(nrows=1, ncols=2, figsize=(8, 3))\n",
    "axs[0].imshow(image)\n",
    "axs[0].plot(fixation_history_x, fixation_history_y, 'o-', color='red')\n",
    "axs[0].scatter(fixation_history_x[-1], fixation_history_y[-1], 100, color='yellow', zorder=100)\n",
    "axs[0].set_axis_off()\n",
    "axs[1].matshow(log_density_prediction.detach().cpu().numpy()[0, 0])  # first image in batch, first (and only) channel\n",
    "axs[1].plot(fixation_history_x, fixation_history_y, 'o-', color='red')\n",
    "axs[1].scatter(fixation_history_x[-1], fixation_history_y[-1], 100, color='yellow', zorder=100)\n",
    "axs[1].set_axis_off()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "2b512963",
   "metadata": {},
   "outputs": [],
   "source": [
    "model.included_fixations"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "33d6872d",
   "metadata": {},
   "outputs": [],
   "source": [
    "fixation_history_x"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "8bce1d25",
   "metadata": {},
   "outputs": [],
   "source": [
    "fixation_history_x[model.included_fixations]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "751cb04e",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b3160caa",
   "metadata": {},
   "outputs": [],
   "source": [
    "import matplotlib.pyplot as plt\n",
    "import numpy as np\n",
    "from scipy.misc import face\n",
    "from scipy.ndimage import zoom\n",
    "from scipy.special import logsumexp\n",
    "import torch\n",
    "\n",
    "import deepgaze_pytorch\n",
    "\n",
    "DEVICE = 'cuda'\n",
    "\n",
    "# you can use DeepGazeI or DeepGazeIIE\n",
    "model = deepgaze_pytorch.DeepGazeIII(pretrained=True).to(DEVICE)\n",
    "\n",
    "#image = face()\n",
    "\n",
    "x = {}\n",
    "\n",
    "for i in range(len(imgs)):\n",
    "    \n",
    "    image = imgs[i]\n",
    "    \n",
    "    # location of previous scanpath fixations in x and y (pixel coordinates), starting with the initial fixation on the image.\n",
    "    fixation_history_x = np.array([1024//2, 300, 500, 200, 200, 700])\n",
    "    fixation_history_y = np.array([768//2, 300, 100, 300, 100, 500])\n",
    "\n",
    "    # load precomputed centerbias log density (from MIT1003) over a 1024x1024 image\n",
    "    # you can download the centerbias from https://github.com/matthias-k/DeepGaze/releases/download/v1.0.0/centerbias_mit1003.npy\n",
    "    # alternatively, you can use a uniform centerbias via `centerbias_template = np.zeros((1024, 1024))`.\n",
    "    centerbias_template = np.load('centerbias_mit1003.npy')\n",
    "    # rescale to match image size\n",
    "    centerbias = zoom(centerbias_template, (image.shape[0]/centerbias_template.shape[0], image.shape[1]/centerbias_template.shape[1]), order=0, mode='nearest')\n",
    "    # renormalize log density\n",
    "    centerbias -= logsumexp(centerbias)\n",
    "\n",
    "    image_tensor = torch.tensor([image.transpose(2, 0, 1)]).to(DEVICE)\n",
    "    centerbias_tensor = torch.tensor([centerbias]).to(DEVICE)\n",
    "    x_hist_tensor = torch.tensor([fixation_history_x[model.included_fixations]]).to(DEVICE)\n",
    "    y_hist_tensor = torch.tensor([fixation_history_x[model.included_fixations]]).to(DEVICE)\n",
    "\n",
    "    log_density_prediction = model(image_tensor, centerbias_tensor, x_hist_tensor, y_hist_tensor)\n",
    "\n",
    "    f, axs = plt.subplots(nrows=1, ncols=2, figsize=(8, 3))\n",
    "    axs[0].imshow(image)\n",
    "    axs[0].plot(fixation_history_x, fixation_history_y, 'o-', color='red')\n",
    "    axs[0].scatter(fixation_history_x[-1], fixation_history_y[-1], 100, color='yellow', zorder=100)\n",
    "    axs[0].set_axis_off()\n",
    "    axs[1].matshow(log_density_prediction.detach().cpu().numpy()[0, 0])  # first image in batch, first (and only) channel\n",
    "    axs[1].plot(fixation_history_x, fixation_history_y, 'o-', color='red')\n",
    "    axs[1].scatter(fixation_history_x[-1], fixation_history_y[-1], 100, color='yellow', zorder=100)\n",
    "    axs[1].set_axis_off()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "aa2d7d4e",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "274b461a",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f71d7915",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "6c4adce6",
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "from scipy.misc import face\n",
    "from scipy.ndimage import zoom\n",
    "from scipy.special import logsumexp\n",
    "import torch\n",
    "import matplotlib.pyplot as plt\n",
    "\n",
    "import deepgaze_pytorch\n",
    "\n",
    "DEVICE = 'cuda'\n",
    "\n",
    "# you can use DeepGazeI or DeepGazeIIE\n",
    "model = deepgaze_pytorch.DeepGazeIIE(pretrained=True).to(DEVICE)\n",
    "\n",
    "# image = face()\n",
    "\n",
    "x = {}\n",
    "\n",
    "for i in range(len(imgs)):\n",
    "    \n",
    "    image = imgs[i]\n",
    "    \n",
    "    # load precomputed centerbias log density (from MIT1003) over a 1024x1024 image\n",
    "    # you can download the centerbias from https://github.com/matthias-k/DeepGaze/releases/download/v1.0.0/centerbias_mit1003.npy\n",
    "    # alternatively, you can use a uniform centerbias via `centerbias_template = np.zeros((1024, 1024))`.\n",
    "    centerbias_template = np.load('centerbias_mit1003.npy')\n",
    "    # rescale to match image size\n",
    "    centerbias = zoom(centerbias_template, (image.shape[0]/centerbias_template.shape[0], image.shape[1]/centerbias_template.shape[1]), order=0, mode='nearest')\n",
    "    # renormalize log density\n",
    "    centerbias -= logsumexp(centerbias)\n",
    "\n",
    "    image_tensor = torch.tensor([image.transpose(2, 0, 1)]).to(DEVICE)\n",
    "    centerbias_tensor = torch.tensor([centerbias]).to(DEVICE)\n",
    "\n",
    "    log_density_prediction = model(image_tensor, centerbias_tensor)\n",
    "    \n",
    "    a = log_density_prediction.detach().cpu().numpy()[0, 0]\n",
    "    \n",
    "    x[img_name[i].split('.')[0]] = a\n",
    "    \n",
    "    '''\n",
    "    f, axs = plt.subplots(nrows=1, ncols=2, figsize=(16, 9))\n",
    "    axs[0].imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))\n",
    "    # axs[0].plot(fixation_history_x, fixation_history_y, 'o-', color='red')\n",
    "    # axs[0].scatter(fixation_history_x[-1], fixation_history_y[-1], 100, color='yellow', zorder=100)\n",
    "    axs[0].set_axis_off()\n",
    "    axs[1].matshow(log_density_prediction.detach().cpu().numpy()[0, 0])  # first image in batch, first (and only) channel\n",
    "    # axs[1].plot(fixation_history_x, fixation_history_y, 'o-', color='red')\n",
    "    # axs[1].scatter(fixation_history_x[-1], fixation_history_y[-1], 100, color='yellow', zorder=100)\n",
    "    axs[1].set_axis_off()\n",
    "    # plt.savefig(os.path.join('DG2_heatmaps', '{0}.jpg'.format(i)))\n",
    "    '''\n",
    "    \n",
    "    #break"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "eca95def",
   "metadata": {},
   "outputs": [],
   "source": [
    "image"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d69ce384",
   "metadata": {},
   "outputs": [],
   "source": [
    "import matplotlib.pyplot as plt\n",
    "import numpy as np\n",
    "from scipy.misc import face\n",
    "from scipy.ndimage import zoom\n",
    "from scipy.special import logsumexp\n",
    "import torch\n",
    "\n",
    "import deepgaze_pytorch\n",
    "\n",
    "DEVICE = 'cuda'\n",
    "\n",
    "# you can use DeepGazeI or DeepGazeIIE\n",
    "model = deepgaze_pytorch.DeepGazeI(pretrained=True).to(DEVICE)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c8207585",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b9d406ff",
   "metadata": {
    "scrolled": true
   },
   "outputs": [],
   "source": [
    "%%capture captured_output\n",
    "# Your code here\n",
    "print(model)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "984c0e9c",
   "metadata": {
    "scrolled": true
   },
   "outputs": [],
   "source": [
    "with open(\"DG1_arch.txt\", \"w\") as f:\n",
    "    f.write(captured_output.stdout)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "6d170109",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.5"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}