Commit
·
b652f9c
1
Parent(s):
4e55bb0
fix percentages
Browse files- app/core/prompts.py +5 -5
- app/services/base.py +14 -1
- app/services/service_openai.py +6 -4
app/core/prompts.py
CHANGED
@@ -19,21 +19,21 @@ FOLLOW_SCHEMA_HUMAN = """Convert following attributes to structured schema. Keep
|
|
19 |
|
20 |
{json_info}"""
|
21 |
|
22 |
-
GET_PERCENTAGE_SYSTEM = "You have to assign a
|
23 |
|
24 |
-
GET_PERCENTAGE_HUMAN = """For each allowed value in each attribute, assign a percentage of certainty (
|
25 |
-
|
26 |
You should use the following product data to assist you, if available:
|
27 |
{product_data}
|
28 |
If an attribute appears in both the image and the product data, use the value from the product data.
|
29 |
"""
|
30 |
|
31 |
-
REEVALUATE_SYSTEM = "You are
|
32 |
|
33 |
REEVALUATE_HUMAN = """Reevaluate the following attributes of the main product (or {product_taxonomy}) shown in the images. Here are the attributes to reevaluate:
|
34 |
{product_data}
|
35 |
|
36 |
-
If an attribute
|
37 |
"""
|
38 |
|
39 |
class Prompts(BaseSettings):
|
|
|
19 |
|
20 |
{json_info}"""
|
21 |
|
22 |
+
GET_PERCENTAGE_SYSTEM = "You are a fashion assistant. You have to assign percentages of cerntainty to each attribute of a product based on the image and product data. You will be given an image or a set of images of a product and set of attributes and should output the percentages of certainty into the given structure."
|
23 |
|
24 |
+
GET_PERCENTAGE_HUMAN = """For each allowed value in each attribute, assign a percentage of certainty (from 0 to 100) that the product fits that value.
|
25 |
+
For attributes of type list[string], there can be multiple values, and multiple percentages of 100 are possible.
|
26 |
You should use the following product data to assist you, if available:
|
27 |
{product_data}
|
28 |
If an attribute appears in both the image and the product data, use the value from the product data.
|
29 |
"""
|
30 |
|
31 |
+
REEVALUATE_SYSTEM = "You are a fashion assistant. You have to reevaluate the attributes of a product based on the image and product data. You will be given an image or a set of images of a product and set of attributes and should output the reevaluated attributes into the given structure."
|
32 |
|
33 |
REEVALUATE_HUMAN = """Reevaluate the following attributes of the main product (or {product_taxonomy}) shown in the images. Here are the attributes to reevaluate:
|
34 |
{product_data}
|
35 |
|
36 |
+
If an attribute has type of string, do not need to reevaluate the values, just the attribute itself. If an attribute has type of list[string], reevaluate the top three values.
|
37 |
"""
|
38 |
|
39 |
class Prompts(BaseSettings):
|
app/services/base.py
CHANGED
@@ -27,7 +27,7 @@ def cf_style_to_pydantic_percentage_shema(
|
|
27 |
else:
|
28 |
multiple = False
|
29 |
class_name = "Class_" + attribute.capitalize()
|
30 |
-
multiple_desc = "
|
31 |
attribute_desc = attribute_info.description
|
32 |
attribute_line = f'{attribute}: {class_name} = Field("", description="{multiple_desc}, {attribute_desc}")'
|
33 |
|
@@ -52,6 +52,12 @@ class Product(BaseModel):
|
|
52 |
exec(pydantic_code, globals())
|
53 |
return Product
|
54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
class BaseAttributionService(ABC):
|
57 |
@abstractmethod
|
@@ -62,6 +68,7 @@ class BaseAttributionService(ABC):
|
|
62 |
img_urls: List[str],
|
63 |
product_taxonomy: str,
|
64 |
pil_images: List[Any] = None,
|
|
|
65 |
) -> Dict[str, Any]:
|
66 |
pass
|
67 |
|
@@ -73,6 +80,7 @@ class BaseAttributionService(ABC):
|
|
73 |
img_urls: List[str],
|
74 |
product_taxonomy: str,
|
75 |
pil_images: List[Any] = None,
|
|
|
76 |
) -> Dict[str, Any]:
|
77 |
pass
|
78 |
|
@@ -91,6 +99,7 @@ class BaseAttributionService(ABC):
|
|
91 |
product_data: Dict[str, Union[str, List[str]]],
|
92 |
pil_images: List[Any] = None,
|
93 |
img_paths: List[str] = None,
|
|
|
94 |
) -> Dict[str, Any]:
|
95 |
# validate_json_schema(schema)
|
96 |
|
@@ -105,6 +114,8 @@ class BaseAttributionService(ABC):
|
|
105 |
for key, value in attributes.items():
|
106 |
transformed_attributes[forward_mapping[key]] = value
|
107 |
|
|
|
|
|
108 |
# attributes_model = convert_attribute_to_model(transformed_attributes)
|
109 |
attributes_percentage_model = cf_style_to_pydantic_percentage_shema(transformed_attributes)
|
110 |
schema = attributes_percentage_model.model_json_schema()
|
@@ -116,6 +127,7 @@ class BaseAttributionService(ABC):
|
|
116 |
product_data,
|
117 |
# pil_images=pil_images, # temporarily removed to save cost
|
118 |
img_paths=img_paths,
|
|
|
119 |
)
|
120 |
validate_json_data(data, schema)
|
121 |
|
@@ -128,6 +140,7 @@ class BaseAttributionService(ABC):
|
|
128 |
str_data,
|
129 |
# pil_images=pil_images, # temporarily removed to save cost
|
130 |
img_paths=img_paths,
|
|
|
131 |
)
|
132 |
|
133 |
init_reevaluate_data = {}
|
|
|
27 |
else:
|
28 |
multiple = False
|
29 |
class_name = "Class_" + attribute.capitalize()
|
30 |
+
multiple_desc = "multi-label classification" if multiple else "classification"
|
31 |
attribute_desc = attribute_info.description
|
32 |
attribute_line = f'{attribute}: {class_name} = Field("", description="{multiple_desc}, {attribute_desc}")'
|
33 |
|
|
|
52 |
exec(pydantic_code, globals())
|
53 |
return Product
|
54 |
|
55 |
+
def build_attributes_types_prompt(attributes):
|
56 |
+
list_of_types_prompt = "\n List of attributes types:\n"
|
57 |
+
for key, value in attributes.items():
|
58 |
+
list_of_types_prompt += f"- {key}: {value.data_type}\n"
|
59 |
+
return list_of_types_prompt
|
60 |
+
|
61 |
|
62 |
class BaseAttributionService(ABC):
|
63 |
@abstractmethod
|
|
|
68 |
img_urls: List[str],
|
69 |
product_taxonomy: str,
|
70 |
pil_images: List[Any] = None,
|
71 |
+
appended_prompt: str = "",
|
72 |
) -> Dict[str, Any]:
|
73 |
pass
|
74 |
|
|
|
80 |
img_urls: List[str],
|
81 |
product_taxonomy: str,
|
82 |
pil_images: List[Any] = None,
|
83 |
+
appended_prompt: str = "",
|
84 |
) -> Dict[str, Any]:
|
85 |
pass
|
86 |
|
|
|
99 |
product_data: Dict[str, Union[str, List[str]]],
|
100 |
pil_images: List[Any] = None,
|
101 |
img_paths: List[str] = None,
|
102 |
+
appended_prompt = str
|
103 |
) -> Dict[str, Any]:
|
104 |
# validate_json_schema(schema)
|
105 |
|
|
|
114 |
for key, value in attributes.items():
|
115 |
transformed_attributes[forward_mapping[key]] = value
|
116 |
|
117 |
+
attributes_types_prompt = build_attributes_types_prompt(attributes)
|
118 |
+
|
119 |
# attributes_model = convert_attribute_to_model(transformed_attributes)
|
120 |
attributes_percentage_model = cf_style_to_pydantic_percentage_shema(transformed_attributes)
|
121 |
schema = attributes_percentage_model.model_json_schema()
|
|
|
127 |
product_data,
|
128 |
# pil_images=pil_images, # temporarily removed to save cost
|
129 |
img_paths=img_paths,
|
130 |
+
appended_prompt=attributes_types_prompt
|
131 |
)
|
132 |
validate_json_data(data, schema)
|
133 |
|
|
|
140 |
str_data,
|
141 |
# pil_images=pil_images, # temporarily removed to save cost
|
142 |
img_paths=img_paths,
|
143 |
+
appended_prompt=attributes_types_prompt
|
144 |
)
|
145 |
|
146 |
init_reevaluate_data = {}
|
app/services/service_openai.py
CHANGED
@@ -68,10 +68,11 @@ class OpenAIService(BaseAttributionService):
|
|
68 |
product_data: Dict[str, Union[str, List[str]]],
|
69 |
pil_images: List[Any] = None, # do not remove, this is for weave
|
70 |
img_paths: List[str] = None,
|
|
|
71 |
) -> Dict[str, Any]:
|
72 |
|
73 |
print("Prompt: ")
|
74 |
-
print(prompts.GET_PERCENTAGE_HUMAN_MESSAGE.format(product_taxonomy=product_taxonomy, product_data=product_data_to_str(product_data)))
|
75 |
|
76 |
text_content = [
|
77 |
{
|
@@ -79,7 +80,7 @@ class OpenAIService(BaseAttributionService):
|
|
79 |
"text": prompts.EXTRACT_INFO_HUMAN_MESSAGE.format(
|
80 |
product_taxonomy=product_taxonomy,
|
81 |
product_data=product_data_to_str(product_data),
|
82 |
-
),
|
83 |
},
|
84 |
]
|
85 |
if img_urls is not None:
|
@@ -157,10 +158,11 @@ class OpenAIService(BaseAttributionService):
|
|
157 |
product_data: str,
|
158 |
pil_images: List[Any] = None, # do not remove, this is for weave
|
159 |
img_paths: List[str] = None,
|
|
|
160 |
) -> Dict[str, Any]:
|
161 |
|
162 |
print("Prompt: ")
|
163 |
-
print(prompts.REEVALUATE_HUMAN_MESSAGE.format(product_taxonomy=product_taxonomy, product_data=product_data))
|
164 |
|
165 |
text_content = [
|
166 |
{
|
@@ -168,7 +170,7 @@ class OpenAIService(BaseAttributionService):
|
|
168 |
"text": prompts.REEVALUATE_HUMAN_MESSAGE.format(
|
169 |
product_taxonomy=product_taxonomy,
|
170 |
product_data=product_data,
|
171 |
-
),
|
172 |
},
|
173 |
]
|
174 |
if img_urls is not None:
|
|
|
68 |
product_data: Dict[str, Union[str, List[str]]],
|
69 |
pil_images: List[Any] = None, # do not remove, this is for weave
|
70 |
img_paths: List[str] = None,
|
71 |
+
appended_prompt: str = "",
|
72 |
) -> Dict[str, Any]:
|
73 |
|
74 |
print("Prompt: ")
|
75 |
+
print(prompts.GET_PERCENTAGE_HUMAN_MESSAGE.format(product_taxonomy=product_taxonomy, product_data=product_data_to_str(product_data)) + appended_prompt)
|
76 |
|
77 |
text_content = [
|
78 |
{
|
|
|
80 |
"text": prompts.EXTRACT_INFO_HUMAN_MESSAGE.format(
|
81 |
product_taxonomy=product_taxonomy,
|
82 |
product_data=product_data_to_str(product_data),
|
83 |
+
) + appended_prompt,
|
84 |
},
|
85 |
]
|
86 |
if img_urls is not None:
|
|
|
158 |
product_data: str,
|
159 |
pil_images: List[Any] = None, # do not remove, this is for weave
|
160 |
img_paths: List[str] = None,
|
161 |
+
appended_prompt: str = "",
|
162 |
) -> Dict[str, Any]:
|
163 |
|
164 |
print("Prompt: ")
|
165 |
+
print(prompts.REEVALUATE_HUMAN_MESSAGE.format(product_taxonomy=product_taxonomy, product_data=product_data) + appended_prompt)
|
166 |
|
167 |
text_content = [
|
168 |
{
|
|
|
170 |
"text": prompts.REEVALUATE_HUMAN_MESSAGE.format(
|
171 |
product_taxonomy=product_taxonomy,
|
172 |
product_data=product_data,
|
173 |
+
) + appended_prompt,
|
174 |
},
|
175 |
]
|
176 |
if img_urls is not None:
|