bgremoval / app.py
petergpt's picture
Update app.py
de63122 verified
import time
import gc
import torch
from PIL import Image
from torchvision import transforms
import gradio as gr
from transformers import AutoConfig, AutoModelForImageSegmentation
# 1) Wrap config loading in a helper that monkey-patches a dummy get_text_config().
def load_model():
config = AutoConfig.from_pretrained("zhengpeng7/BiRefNet_lite", trust_remote_code=True)
config.is_encoder_decoder = False
# We define a dummy function that returns a minimal object
# with a tie_word_embeddings attribute, so tie_weights() won't fail.
def dummy_text_config(decoder=True):
class DummyTextConfig:
tie_word_embeddings = False
return DummyTextConfig()
# Patch the config so huggingface code won't blow up
setattr(config, "get_text_config", dummy_text_config)
model = AutoModelForImageSegmentation.from_pretrained(
"zhengpeng7/BiRefNet_lite",
config=config,
trust_remote_code=True
)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model.to(device)
model.eval()
return model, device
# 2) Initialize global model & device
birefnet, device = load_model()
# 3) Preprocessing transform
image_size = (1024, 1024)
transform_image = transforms.Compose([
transforms.Resize(image_size),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])
])
def run_inference(images, model, device):
inputs = []
original_sizes = []
for img in images:
original_sizes.append(img.size)
inputs.append(transform_image(img))
input_tensor = torch.stack(inputs).to(device)
try:
with torch.no_grad():
# If the model returns multiple outputs, adapt as needed
output = model(input_tensor)
# The last element might be your segmentation mask. Adjust if needed:
# e.g. preds = output[-1] if it returns a list/tuple
# or preds = output.logits if it returns a named field
# The original example used `output[-1].sigmoid()`, so:
preds = output[-1].sigmoid().cpu()
except torch.OutOfMemoryError:
del input_tensor
torch.cuda.empty_cache()
raise
# Post-process
results = []
for i, img in enumerate(images):
pred = preds[i].squeeze()
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(original_sizes[i])
result = Image.new("RGBA", original_sizes[i], (0, 0, 0, 0))
result.paste(img, mask=mask)
results.append(result)
# Cleanup
del input_tensor, preds
gc.collect()
torch.cuda.empty_cache()
return results
def binary_search_max(images):
low, high = 1, len(images)
best, best_count = None, 0
while low <= high:
mid = (low + high) // 2
batch = images[:mid]
try:
# Re-load the model to avoid leftover memory fragmentation
global birefnet, device
birefnet, device = load_model()
res = run_inference(batch, birefnet, device)
best, best_count = res, mid
low = mid + 1
except torch.OutOfMemoryError:
high = mid - 1
return best, best_count
def extract_objects(filepaths):
images = [Image.open(p).convert("RGB") for p in filepaths]
start_time = time.time()
# First attempt: all images at once
try:
results = run_inference(images, birefnet, device)
end_time = time.time()
total_time = end_time - start_time
summary = f"Total request time: {total_time:.2f}s\nProcessed {len(images)} images successfully."
return results, summary
except torch.OutOfMemoryError:
# If it fails with OOM, do a fallback
oom_time = time.time()
initial_attempt_time = oom_time - start_time
best, best_count = binary_search_max(images)
end_time = time.time()
total_time = end_time - start_time
if best is None:
# Not even 1 image can be processed
summary = (
f"Initial attempt OOM after {initial_attempt_time:.2f}s.\n"
f"Could not process even a single image.\n"
f"Total time including fallback attempts: {total_time:.2f}s."
)
return [], summary
else:
summary = (
f"Initial attempt OOM after {initial_attempt_time:.2f}s.\n"
f"Found that {best_count} images can be processed without OOM.\n"
f"Total time including fallback attempts: {total_time:.2f}s.\n"
f"Next time, try using up to {best_count} images."
)
return best, summary
iface = gr.Interface(
fn=extract_objects,
inputs=gr.Files(label="Upload Multiple Images", type="filepath", file_count="multiple"),
outputs=[gr.Gallery(label="Processed Images"), gr.Textbox(label="Timing Info")],
title="BiRefNet Bulk Background Removal (with fallback)",
description="Upload multiple images. If OOM occurs, we fallback to smaller batches."
)
if __name__ == "__main__":
iface.launch()