Spaces:
Runtime error
Runtime error
| """ | |
| A model worker with transformers libs executes the model. | |
| Run BF16 inference with: | |
| python model_server.py --host localhost --model-path THUDM/glm-4-voice-9b --port 10000 --dtype bfloat16 --device cuda:0 | |
| Run Int4 inference with: | |
| python model_server.py --host localhost --model-path THUDM/glm-4-voice-9b --port 10000 --dtype int4 --device cuda:0 | |
| """ | |
| import argparse | |
| import json | |
| from fastapi import FastAPI, Request | |
| from fastapi.responses import StreamingResponse | |
| from transformers import AutoModel, AutoTokenizer, BitsAndBytesConfig | |
| from transformers.generation.streamers import BaseStreamer | |
| import torch | |
| import uvicorn | |
| from threading import Thread | |
| from queue import Queue | |
| class TokenStreamer(BaseStreamer): | |
| def __init__(self, skip_prompt: bool = False, timeout=None): | |
| self.skip_prompt = skip_prompt | |
| # variables used in the streaming process | |
| self.token_queue = Queue() | |
| self.stop_signal = None | |
| self.next_tokens_are_prompt = True | |
| self.timeout = timeout | |
| def put(self, value): | |
| if len(value.shape) > 1 and value.shape[0] > 1: | |
| raise ValueError("TextStreamer only supports batch size 1") | |
| elif len(value.shape) > 1: | |
| value = value[0] | |
| if self.skip_prompt and self.next_tokens_are_prompt: | |
| self.next_tokens_are_prompt = False | |
| return | |
| for token in value.tolist(): | |
| self.token_queue.put(token) | |
| def end(self): | |
| self.token_queue.put(self.stop_signal) | |
| def __iter__(self): | |
| return self | |
| def __next__(self): | |
| value = self.token_queue.get(timeout=self.timeout) | |
| if value == self.stop_signal: | |
| raise StopIteration() | |
| else: | |
| return value | |
| class ModelWorker: | |
| def __init__(self, model_path, dtype="bfloat16", device='cuda'): | |
| self.device = device | |
| self.bnb_config = BitsAndBytesConfig( | |
| load_in_4bit=True, | |
| bnb_4bit_use_double_quant=True, | |
| bnb_4bit_quant_type="nf4", | |
| bnb_4bit_compute_dtype=torch.bfloat16 | |
| ) if dtype == "int4" else None | |
| self.glm_model = AutoModel.from_pretrained( | |
| model_path, | |
| trust_remote_code=True, | |
| quantization_config=self.bnb_config if self.bnb_config else None, | |
| device_map={"": 0} | |
| ).eval() | |
| self.glm_tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) | |
| def generate_stream(self, params): | |
| tokenizer, model = self.glm_tokenizer, self.glm_model | |
| prompt = params["prompt"] | |
| temperature = float(params.get("temperature", 1.0)) | |
| top_p = float(params.get("top_p", 1.0)) | |
| max_new_tokens = int(params.get("max_new_tokens", 256)) | |
| inputs = tokenizer([prompt], return_tensors="pt") | |
| inputs = inputs.to(self.device) | |
| streamer = TokenStreamer(skip_prompt=True) | |
| thread = Thread( | |
| target=model.generate, | |
| kwargs=dict( | |
| **inputs, | |
| max_new_tokens=int(max_new_tokens), | |
| temperature=float(temperature), | |
| top_p=float(top_p), | |
| streamer=streamer | |
| ) | |
| ) | |
| thread.start() | |
| for token_id in streamer: | |
| yield (json.dumps({"token_id": token_id, "error_code": 0}) + "\n").encode() | |
| def generate_stream_gate(self, params): | |
| try: | |
| for x in self.generate_stream(params): | |
| yield x | |
| except Exception as e: | |
| print("Caught Unknown Error", e) | |
| ret = { | |
| "text": "Server Error", | |
| "error_code": 1, | |
| } | |
| yield (json.dumps(ret) + "\n").encode() | |
| app = FastAPI() | |
| async def generate_stream(request: Request): | |
| params = await request.json() | |
| generator = worker.generate_stream_gate(params) | |
| return StreamingResponse(generator) | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--host", type=str, default="localhost") | |
| parser.add_argument("--dtype", type=str, default="bfloat16") | |
| parser.add_argument("--device", type=str, default="cuda:0") | |
| parser.add_argument("--port", type=int, default=10000) | |
| parser.add_argument("--model-path", type=str, default="THUDM/glm-4-voice-9b") | |
| args = parser.parse_args() | |
| worker = ModelWorker(args.model_path, args.dtype, args.device) | |
| uvicorn.run(app, host=args.host, port=args.port, log_level="info") | |