Spaces:
Sleeping
Sleeping
updated
Browse files- app.py +228 -0
- config.py +3 -0
- requirements.txt +4 -0
app.py
ADDED
@@ -0,0 +1,228 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from openai import OpenAI
|
2 |
+
import os
|
3 |
+
import requests
|
4 |
+
import json
|
5 |
+
from config import CONFIG
|
6 |
+
import gradio as gr
|
7 |
+
import time
|
8 |
+
import re
|
9 |
+
#export GRADIO_DEBUG=1
|
10 |
+
|
11 |
+
def search_inspire(query, size=10):
|
12 |
+
"""
|
13 |
+
Search INSPIRE HEP database using fulltext search
|
14 |
+
|
15 |
+
Args:
|
16 |
+
query (str): Search query
|
17 |
+
size (int): Number of results to return
|
18 |
+
"""
|
19 |
+
base_url = "https://inspirehep.net/api/literature"
|
20 |
+
params = {
|
21 |
+
"q": query,
|
22 |
+
"size": size,
|
23 |
+
"format": "json"
|
24 |
+
}
|
25 |
+
|
26 |
+
response = requests.get(base_url, params=params)
|
27 |
+
return response.json()
|
28 |
+
|
29 |
+
def format_reference(metadata):
|
30 |
+
output = f"{', '.join(author.get('full_name', '') for author in metadata.get('authors', []))} "
|
31 |
+
output += f"({metadata.get('publication_info', [{}])[0].get('year', 'N/A')}). "
|
32 |
+
output += f"*{metadata.get('titles', [{}])[0].get('title', 'N/A')}*. "
|
33 |
+
output += f"DOI: {metadata.get('dois', [{}])[0].get('value', 'N/A') if metadata.get('dois') else 'N/A'}. "
|
34 |
+
output += f"[INSPIRE record {metadata['control_number']}](https://inspirehep.net/literature/{metadata['control_number']})"
|
35 |
+
output += "\n\n"
|
36 |
+
return output
|
37 |
+
|
38 |
+
def format_results(results):
|
39 |
+
"""Print formatted search results"""
|
40 |
+
output = ""
|
41 |
+
for i, hit in enumerate(results['hits']['hits']):
|
42 |
+
metadata = hit['metadata']
|
43 |
+
output += f"**[{i}]** "
|
44 |
+
output += format_reference(metadata)
|
45 |
+
return output
|
46 |
+
|
47 |
+
def results_context(results):
|
48 |
+
""" Prepare a context from the results for the LLM """
|
49 |
+
context = ""
|
50 |
+
for i, hit in enumerate(results['hits']['hits']):
|
51 |
+
metadata = hit['metadata']
|
52 |
+
context += f"Result [{i}]\n\n"
|
53 |
+
context += f"Title: {metadata.get('titles', [{}])[0].get('title', 'N/A')}\n\n"
|
54 |
+
context += f"Abstract: {metadata.get('abstracts', [{}])[0].get('value', 'N/A')}\n\n"
|
55 |
+
return context
|
56 |
+
|
57 |
+
def user_prompt(query, context):
|
58 |
+
""" Generate a prompt for the LLM """
|
59 |
+
prompt = f"""
|
60 |
+
QUERY: {query}
|
61 |
+
|
62 |
+
CONTEXT:
|
63 |
+
|
64 |
+
{context}
|
65 |
+
|
66 |
+
ANSWER:
|
67 |
+
|
68 |
+
"""
|
69 |
+
return prompt
|
70 |
+
|
71 |
+
def llm_expand_query(query):
|
72 |
+
""" Expands a query to variations of fulltext searches """
|
73 |
+
|
74 |
+
response = client.chat.completions.create(
|
75 |
+
model="gpt-4o",
|
76 |
+
messages=[
|
77 |
+
{
|
78 |
+
"role": "user",
|
79 |
+
"content": [
|
80 |
+
{
|
81 |
+
"type": "text",
|
82 |
+
"text": f"""
|
83 |
+
Expand this query into a the query format used for a fulltext search
|
84 |
+
over the INSPIRE HEP database. Propose alternatives of the query to
|
85 |
+
maximize the recall and join those variantes using OR operators and
|
86 |
+
prepend each variant with the ft prefix. Just provide the expanded
|
87 |
+
query, without explanations.
|
88 |
+
|
89 |
+
Example of query:
|
90 |
+
how far are black holes?
|
91 |
+
|
92 |
+
Expanded query:
|
93 |
+
ft "how far are black holes" OR ft "distance from black holes" OR ft
|
94 |
+
"distances to black holes" OR ft "measurement of distance to black
|
95 |
+
holes" OR ft "remoteness of black holes" OR ft "distance to black
|
96 |
+
holes" OR ft "how far are singularities" OR ft "distance to
|
97 |
+
singularities" OR ft "distances to event horizon" OR ft "distance
|
98 |
+
from Schwarzschild radius" OR ft "black hole distance"
|
99 |
+
|
100 |
+
Query: {query}
|
101 |
+
|
102 |
+
Expanded query:
|
103 |
+
"""
|
104 |
+
}
|
105 |
+
]
|
106 |
+
}
|
107 |
+
],
|
108 |
+
response_format={
|
109 |
+
"type": "text"
|
110 |
+
},
|
111 |
+
temperature=1,
|
112 |
+
max_tokens=2048,
|
113 |
+
top_p=1,
|
114 |
+
frequency_penalty=0,
|
115 |
+
presence_penalty=0
|
116 |
+
)
|
117 |
+
|
118 |
+
return response.choices[0].message.content
|
119 |
+
|
120 |
+
def llm_generate_answer(prompt):
|
121 |
+
""" Generate a response from the LLM """
|
122 |
+
|
123 |
+
response = client.chat.completions.create(
|
124 |
+
model="gpt-4o",
|
125 |
+
messages=[
|
126 |
+
{
|
127 |
+
"role": "system",
|
128 |
+
"content": [
|
129 |
+
{
|
130 |
+
"type": "text",
|
131 |
+
"text": """You are part of a Retrieval Augmented Generation system
|
132 |
+
(RAG) and are asked with a query and a context of results. Generate an
|
133 |
+
answer substantiated by the results provided and citing them using
|
134 |
+
their index when used to provide an answer text. Do not generate text
|
135 |
+
that is not grounded in a reference, so all paragraphs should cite a
|
136 |
+
search result. End the answer with the query and a brief answer as
|
137 |
+
summary of the previous discussed results. Do not consider results
|
138 |
+
that are not related to the query and, if no specif answer can be
|
139 |
+
provided, explain that in the brief answer."""
|
140 |
+
}
|
141 |
+
]
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"role": "user",
|
145 |
+
"content": [
|
146 |
+
{
|
147 |
+
"type": "text",
|
148 |
+
"text": prompt
|
149 |
+
}
|
150 |
+
]
|
151 |
+
}
|
152 |
+
],
|
153 |
+
response_format={
|
154 |
+
"type": "text"
|
155 |
+
},
|
156 |
+
temperature=1,
|
157 |
+
max_tokens=2048,
|
158 |
+
top_p=1,
|
159 |
+
frequency_penalty=0,
|
160 |
+
presence_penalty=0
|
161 |
+
)
|
162 |
+
|
163 |
+
return response.choices[0].message.content
|
164 |
+
|
165 |
+
def clean_refs(answer, results):
|
166 |
+
""" Clean the references from the answer """
|
167 |
+
|
168 |
+
# Find references
|
169 |
+
unique_ordered = []
|
170 |
+
for match in re.finditer(r'\[(\d+)\]', answer):
|
171 |
+
ref_num = int(match.group(1))
|
172 |
+
if ref_num not in unique_ordered:
|
173 |
+
unique_ordered.append(ref_num)
|
174 |
+
|
175 |
+
# Filter references
|
176 |
+
new_i = 1
|
177 |
+
new_results = ""
|
178 |
+
for i, hit in enumerate(results['hits']['hits']):
|
179 |
+
if i not in unique_ordered:
|
180 |
+
continue
|
181 |
+
metadata = hit['metadata']
|
182 |
+
new_results += f"**[{new_i}]** "
|
183 |
+
new_results += format_reference(metadata)
|
184 |
+
new_i += 1
|
185 |
+
|
186 |
+
new_i = 1
|
187 |
+
for i in unique_ordered:
|
188 |
+
answer = answer.replace(f"[{i}]", f"[__NEW_REF_ID_{new_i}]")
|
189 |
+
new_i += 1
|
190 |
+
answer = answer.replace("__NEW_REF_ID_", "")
|
191 |
+
|
192 |
+
return answer, new_results
|
193 |
+
|
194 |
+
def search(query, progress=gr.Progress()):
|
195 |
+
time.sleep(1)
|
196 |
+
progress(0, desc="Expanding query...")
|
197 |
+
query = llm_expand_query(query)
|
198 |
+
progress(0.25, desc="Searching INSPIRE HEP...")
|
199 |
+
results = search_inspire(query)
|
200 |
+
progress(0.50, desc="Generating answer...")
|
201 |
+
context = results_context(results)
|
202 |
+
prompt = user_prompt(query, context)
|
203 |
+
answer = llm_generate_answer(prompt)
|
204 |
+
new_answer, references = clean_refs(answer, results)
|
205 |
+
progress(1, desc="Done!")
|
206 |
+
|
207 |
+
#json_str = json.dumps(results['hits']['hits'][0]['metadata'], indent=4)
|
208 |
+
return "**Answer**:\n\n" + new_answer +"\n\n**References**:\n\n" + references #+ "\n\n <pre>\n" + json_str + "</pre>"
|
209 |
+
|
210 |
+
# ----------- MAIN ------------------------------------------------------------
|
211 |
+
|
212 |
+
os.environ["OPENAI_API_KEY"] = "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"
|
213 |
+
client = OpenAI()
|
214 |
+
|
215 |
+
with gr.Blocks() as demo:
|
216 |
+
gr.Markdown("# INSPIRE HEP Search")
|
217 |
+
with gr.Row():
|
218 |
+
with gr.Column():
|
219 |
+
query = gr.Textbox(label="Search Query")
|
220 |
+
search_btn = gr.Button("Search")
|
221 |
+
examples = gr.Examples([["Which one is closest star?"], ["In which particles does the Higgs Boson decay to?"]], query)
|
222 |
+
with gr.Column():
|
223 |
+
results = gr.Markdown("Answer will appear here...", label="Search Results", )
|
224 |
+
search_btn.click(fn=search, inputs=query, outputs=results, api_name="search", show_progress=True)
|
225 |
+
|
226 |
+
|
227 |
+
demo.launch()
|
228 |
+
#print(search("how far are black holes?"))
|
config.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
CONFIG = {
|
2 |
+
'OPEN_API_KEY': "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"
|
3 |
+
}
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
openai
|
3 |
+
requests
|
4 |
+
httpx<0.28
|