Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -23,6 +23,10 @@ st.set_page_config(
|
|
23 |
)
|
24 |
|
25 |
# Initialize session state
|
|
|
|
|
|
|
|
|
26 |
if 'processed_data' not in st.session_state:
|
27 |
st.session_state.processed_data = None
|
28 |
if 'summaries' not in st.session_state:
|
@@ -39,6 +43,8 @@ if 'current_tokenizer' not in st.session_state:
|
|
39 |
st.session_state.current_tokenizer = None
|
40 |
if 'model_type' not in st.session_state:
|
41 |
st.session_state.model_type = None
|
|
|
|
|
42 |
|
43 |
|
44 |
# TextProcessor class definition
|
@@ -193,142 +199,156 @@ def validate_excel_structure(df):
|
|
193 |
|
194 |
return len(validation_messages) == 0, validation_messages
|
195 |
|
|
|
|
|
196 |
def preprocess_text(text):
|
197 |
-
"""
|
198 |
if not isinstance(text, str) or not text.strip():
|
199 |
return text
|
200 |
|
201 |
-
#
|
202 |
-
text =
|
203 |
|
204 |
-
#
|
205 |
-
|
|
|
206 |
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
text = re.sub(r'\(\s*([ivx\d]+)\s*\)', r'(\1)', text)
|
211 |
|
212 |
-
|
213 |
-
text = re.sub(r'(?m)^\s*(\d+)\.\s*', r'(\1) ', text)
|
214 |
|
215 |
-
#
|
|
|
|
|
|
|
|
|
216 |
section_patterns = {
|
217 |
-
r'\b(?:
|
218 |
-
r'\b(?:
|
219 |
-
r'\b(?:
|
220 |
-
r'\b(?:
|
221 |
-
r'\b(?:
|
|
|
222 |
}
|
223 |
|
224 |
-
# Remove nested headers
|
225 |
-
nested_header_pattern = r'\d+\.\s*(?:Background|Objectives|Methods|Results|Discussion|Conclusions)\s*:'
|
226 |
-
text = re.sub(nested_header_pattern, '', text)
|
227 |
-
|
228 |
-
# Standardize section headers
|
229 |
for pattern, replacement in section_patterns.items():
|
230 |
text = re.sub(pattern, replacement, text, flags=re.IGNORECASE)
|
231 |
|
232 |
-
#
|
233 |
-
text = re.sub(r'(
|
|
|
|
|
234 |
|
235 |
-
#
|
236 |
-
text = re.sub(r'[
|
237 |
-
|
238 |
-
|
239 |
|
240 |
-
#
|
241 |
-
|
242 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
243 |
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
277 |
|
278 |
|
279 |
def generate_focused_summary(question, abstracts, model, tokenizer):
|
280 |
-
"""Generate a structured summary based on the given question and abstracts."""
|
281 |
-
# Preprocess and clean abstracts
|
282 |
formatted_abstracts = [preprocess_text(abstract) for abstract in abstracts if abstract.strip()]
|
283 |
-
|
284 |
-
if not formatted_abstracts:
|
285 |
-
raise ValueError("Abstracts list is empty or improperly formatted.")
|
286 |
-
|
287 |
-
# Join abstracts with separator
|
288 |
abstracts_content = " [SEP] ".join(formatted_abstracts)
|
289 |
-
|
290 |
-
# Create the prompt
|
291 |
prompt = f"""
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
3. Write complete, grammatically correct sentences.
|
298 |
-
4. Do not use bullet points, lists, or combined section headers.
|
299 |
-
5. Maintain the exact order of sections: Background, Objectives, Methods, Results, Conclusions.
|
300 |
-
6. Avoid redundancies, incomplete thoughts, and cutting sentences mid-way.
|
301 |
-
7. Use transition words (e.g., "Additionally," "Furthermore," "Moreover") to connect ideas naturally.
|
302 |
-
**REQUIRED SECTIONS AND CONTENT:**
|
303 |
-
1. **Background**:
|
304 |
-
- Provide the context and motivation for the study.
|
305 |
-
- Do not mention objectives, methods, or results in this section.
|
306 |
-
2. **Objectives**:
|
307 |
-
- Clearly state the aim(s) of the study.
|
308 |
-
- Avoid referencing any methods or findings.
|
309 |
-
3. **Methods**:
|
310 |
-
- Describe the approach, tools, and procedures used.
|
311 |
-
- Do not include any findings or results in this section.
|
312 |
-
4. **Results**:
|
313 |
-
- Summarize the key findings, including relevant statistics and outcomes.
|
314 |
-
- Mention implications only if explicitly stated in the abstracts.
|
315 |
-
5. **Conclusions**:
|
316 |
-
- Highlight the overall interpretation of findings.
|
317 |
-
- Emphasize the significance and implications of the study.
|
318 |
-
**CRITICAL FORMAT RULES:**
|
319 |
-
1. Each section title must be followed by a colon and a space.
|
320 |
-
2. All sentences must be grammatically complete and coherent.
|
321 |
-
3. Avoid bullet points, lists, and repeated sections.
|
322 |
-
4. End each section with a period.
|
323 |
-
**INPUT ABSTRACTS:** {abstracts_content}
|
324 |
-
"""
|
325 |
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
|
|
|
|
|
|
|
|
331 |
|
|
|
332 |
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
333 |
|
334 |
with torch.no_grad():
|
@@ -336,20 +356,80 @@ def generate_focused_summary(question, abstracts, model, tokenizer):
|
|
336 |
**{
|
337 |
"input_ids": inputs["input_ids"],
|
338 |
"attention_mask": inputs["attention_mask"],
|
339 |
-
"max_length":
|
340 |
-
"min_length":
|
341 |
"num_beams": 4,
|
342 |
"length_penalty": 2.0,
|
343 |
-
"no_repeat_ngram_size":
|
344 |
"temperature": 0.7,
|
345 |
"do_sample": False
|
346 |
}
|
347 |
)
|
348 |
-
|
349 |
-
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
350 |
|
|
|
351 |
return post_process_summary(summary)
|
352 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
353 |
|
354 |
def process_papers_in_batches(df, model, tokenizer, batch_size=2):
|
355 |
"""Process papers in batches for better efficiency"""
|
@@ -619,54 +699,42 @@ def main():
|
|
619 |
if not st.session_state.get('focused_summary_generated', False):
|
620 |
try:
|
621 |
with st.spinner("Analyzing relevant papers..."):
|
622 |
-
# Initialize text processor if needed
|
623 |
if st.session_state.text_processor is None:
|
624 |
st.session_state.text_processor = TextProcessor()
|
625 |
-
|
626 |
-
|
627 |
-
if
|
628 |
-
|
629 |
-
|
630 |
-
|
631 |
-
# Find relevant abstracts
|
632 |
results = st.session_state.text_processor.find_most_relevant_abstracts(
|
633 |
question,
|
634 |
df['Abstract'].tolist(),
|
635 |
top_k=5
|
636 |
)
|
637 |
-
|
638 |
if not results['top_indices']:
|
639 |
-
st.warning("No
|
640 |
-
return
|
641 |
-
|
642 |
-
# Load question-focused model
|
643 |
-
model, tokenizer = get_model("question_focused")
|
644 |
-
if model is None or tokenizer is None:
|
645 |
return
|
646 |
-
|
647 |
-
#
|
648 |
-
|
649 |
-
|
650 |
-
|
651 |
-
|
652 |
-
|
653 |
-
|
654 |
-
|
655 |
-
|
656 |
-
|
657 |
-
|
658 |
-
|
659 |
-
|
660 |
-
st.session_state.relevance_scores = results['scores']
|
661 |
-
st.session_state.focused_summary_generated = True
|
662 |
-
|
663 |
-
finally:
|
664 |
-
# Cleanup second model
|
665 |
-
cleanup_model(model, tokenizer)
|
666 |
-
|
667 |
except Exception as e:
|
668 |
st.error(f"Error generating focused summary: {str(e)}")
|
669 |
reset_processing_state()
|
|
|
|
|
|
|
670 |
|
671 |
# Display focused summary results
|
672 |
if st.session_state.get('focused_summary_generated', False):
|
|
|
23 |
)
|
24 |
|
25 |
# Initialize session state
|
26 |
+
if 'relevant_papers' not in st.session_state:
|
27 |
+
st.session_state.relevant_papers = None
|
28 |
+
if 'relevance_scores' not in st.session_state:
|
29 |
+
st.session_state.relevance_scores = None
|
30 |
if 'processed_data' not in st.session_state:
|
31 |
st.session_state.processed_data = None
|
32 |
if 'summaries' not in st.session_state:
|
|
|
43 |
st.session_state.current_tokenizer = None
|
44 |
if 'model_type' not in st.session_state:
|
45 |
st.session_state.model_type = None
|
46 |
+
if 'focused_summary' not in st.session_state:
|
47 |
+
st.session_state.focused_summary = None
|
48 |
|
49 |
|
50 |
# TextProcessor class definition
|
|
|
199 |
|
200 |
return len(validation_messages) == 0, validation_messages
|
201 |
|
202 |
+
|
203 |
+
|
204 |
def preprocess_text(text):
|
205 |
+
"""Clean biomedical text by handling common formatting issues and standardizing structure."""
|
206 |
if not isinstance(text, str) or not text.strip():
|
207 |
return text
|
208 |
|
209 |
+
# Remove extra whitespace
|
210 |
+
text = ' '.join(text.split())
|
211 |
|
212 |
+
# Roman numeral conversion
|
213 |
+
roman_map = {'i': '1', 'ii': '2', 'iii': '3', 'iv': '4', 'v': '5',
|
214 |
+
'vi': '6', 'vii': '7', 'viii': '8', 'ix': '9', 'x': '10'}
|
215 |
|
216 |
+
def replace_roman(match):
|
217 |
+
roman = match.group(1).lower()
|
218 |
+
return f"({roman_map.get(roman, roman)})"
|
|
|
219 |
|
220 |
+
text = re.sub(r'\(([ivx]+)\)', replace_roman, text)
|
|
|
221 |
|
222 |
+
# Clean enumerated lists
|
223 |
+
for roman in roman_map:
|
224 |
+
text = re.sub(f"\\b{roman}\\)", f"{roman_map[roman]})", text, flags=re.IGNORECASE)
|
225 |
+
|
226 |
+
# Standardize section headers
|
227 |
section_patterns = {
|
228 |
+
r'\b(?:introduction|purpose|background|objectives?|context)\s*:?\s*': 'Background: ',
|
229 |
+
r'\b(?:materials?\s+and\s+methods?|methods?|approach|study\s+design)\s*:?\s*': 'Methods: ',
|
230 |
+
r'\b(?:results?|findings?|observations?)\s*:?\s*': 'Results: ',
|
231 |
+
r'\b(?:conclusions?|summary|final\s+remarks?)\s*:?\s*': 'Conclusions: ',
|
232 |
+
r'\b(?:results?\s+and\s+conclusions?)\s*:?\s*(?=.*?:)': '', # Remove if followed by another section
|
233 |
+
r'\b(?:results?\s*:\s*and\s*conclusions?\s*:)': 'Results: ' # Fix malformed combination
|
234 |
}
|
235 |
|
|
|
|
|
|
|
|
|
|
|
236 |
for pattern, replacement in section_patterns.items():
|
237 |
text = re.sub(pattern, replacement, text, flags=re.IGNORECASE)
|
238 |
|
239 |
+
# Ensure complete sentences in sections
|
240 |
+
text = re.sub(r'(?<=:)\s*([^.!?\n]*?)(?=\s*(?:[A-Z][^:]*:|$))',
|
241 |
+
lambda m: f" {m.group(1)}." if m.group(1) and not m.group(1).strip().endswith('.') else m.group(0),
|
242 |
+
text)
|
243 |
|
244 |
+
# Fix truncated sentences
|
245 |
+
text = re.sub(r'(?<=:)\s*([^.!?\n]*?)\s*(?=[A-Z][^:]*:)',
|
246 |
+
lambda m: f" {m.group(1)}." if m.group(1) else "",
|
247 |
+
text)
|
248 |
|
249 |
+
# Clean formatting
|
250 |
+
text = re.sub(r'[\r\n]+', ' ', text)
|
251 |
+
text = re.sub(r'\s*:\s*', ': ', text)
|
252 |
+
text = re.sub(r'\s+', ' ', text)
|
253 |
+
text = re.sub(r'(?<=[.!?])\s*(?=[A-Z])', ' ', text)
|
254 |
+
text = re.sub(r'•|\*|■|□|→|✓', '', text)
|
255 |
+
text = re.sub(r'\\n|\\r', ' ', text)
|
256 |
+
text = re.sub(r'\s*\(\s*', ' (', text)
|
257 |
+
text = re.sub(r'\s*\)\s*', ') ', text)
|
258 |
|
259 |
+
# Fix statistical notations
|
260 |
+
text = re.sub(r'p\s*[<=>]\s*0\.\d+', lambda m: m.group().replace(' ', ''), text)
|
261 |
+
text = re.sub(r'(?<=\d)\s*%', '%', text)
|
262 |
+
|
263 |
+
# Fix abbreviations spacing
|
264 |
+
text = re.sub(r'(?<=\w)vs\.(?=\w)', 'vs. ', text)
|
265 |
+
text = re.sub(r'(?<=\w)et\s+al\.(?=\w)', 'et al. ', text)
|
266 |
+
|
267 |
+
# Remove repeated punctuation
|
268 |
+
text = re.sub(r'([.!?])\1+', r'\1', text)
|
269 |
+
|
270 |
+
# Final cleanup
|
271 |
+
text = re.sub(r'(?<=[.!?])\s*(?=[A-Z])', ' ', text)
|
272 |
+
text = text.strip()
|
273 |
+
if not text.endswith('.'):
|
274 |
+
text += '.'
|
275 |
+
|
276 |
+
return text
|
277 |
+
|
278 |
+
# """Enhanced text preprocessing with better section handling and prompt removal."""
|
279 |
+
# if not isinstance(text, str) or not text.strip():
|
280 |
+
# return text
|
281 |
+
|
282 |
+
# # Remove prompt leakage
|
283 |
+
# prompt_patterns = [
|
284 |
+
# r'Generate a structured summary addressing this question:.*?(?=\w+:)',
|
285 |
+
# r'Focus on key findings and methods\.',
|
286 |
+
# r'is a structured summary addressing this question:'
|
287 |
+
# ]
|
288 |
+
# for pattern in prompt_patterns:
|
289 |
+
# text = re.sub(pattern, '', text, flags=re.IGNORECASE)
|
290 |
+
|
291 |
+
# # Clean section headers more aggressively
|
292 |
+
# section_patterns = {
|
293 |
+
# r'\b(?:introduction|purpose|background|objectives?|context)\s*:?\s*': 'Background: ',
|
294 |
+
# r'\b(?:materials?\s+and\s+methods?|methods?|approach|study\s+design)\s*:?\s*': 'Methods: ',
|
295 |
+
# r'\b(?:results?|findings?|observations?)\s*:?\s*': 'Results: ',
|
296 |
+
# r'\b(?:conclusions?|summary|final\s+remarks?)\s*:?\s*': 'Conclusions: '
|
297 |
+
# }
|
298 |
+
|
299 |
+
# # Apply section normalization
|
300 |
+
# for pattern, replacement in section_patterns.items():
|
301 |
+
# text = re.sub(pattern, replacement, text, flags=re.IGNORECASE)
|
302 |
+
|
303 |
+
# # Remove combined section headers
|
304 |
+
# combined_headers = [
|
305 |
+
# r'\bmethods?\s+and\s+conclusions?\b',
|
306 |
+
# r'\bresults?\s+and\s+conclusions?\b',
|
307 |
+
# r'\bmaterials?\s+and\s+methods?\b'
|
308 |
+
# ]
|
309 |
+
# for pattern in combined_headers:
|
310 |
+
# text = re.sub(pattern, 'Methods:', text, flags=re.IGNORECASE)
|
311 |
+
|
312 |
+
# # Clean up sentences
|
313 |
+
# sentences = text.split('.')
|
314 |
+
# cleaned_sentences = []
|
315 |
+
# for sentence in sentences:
|
316 |
+
# # Remove redundant section references
|
317 |
+
# sentence = re.sub(r'\b(?:first|second|third|fourth|fifth)\s+sections?\b', '', sentence, flags=re.IGNORECASE)
|
318 |
+
# # Remove comparative phrases about section details
|
319 |
+
# sentence = re.sub(r'\b(?:more|less)\s+detailed\s+than.*', '', sentence, flags=re.IGNORECASE)
|
320 |
+
# if sentence.strip():
|
321 |
+
# cleaned_sentences.append(sentence.strip())
|
322 |
+
|
323 |
+
# # Rejoin and format
|
324 |
+
# text = '. '.join(cleaned_sentences)
|
325 |
+
# text = re.sub(r'\s+', ' ', text) # Remove extra spaces
|
326 |
+
# text = re.sub(r'\s*:\s*', ': ', text) # Fix spacing around colons
|
327 |
+
|
328 |
+
# return text.strip()
|
329 |
|
330 |
|
331 |
def generate_focused_summary(question, abstracts, model, tokenizer):
|
|
|
|
|
332 |
formatted_abstracts = [preprocess_text(abstract) for abstract in abstracts if abstract.strip()]
|
|
|
|
|
|
|
|
|
|
|
333 |
abstracts_content = " [SEP] ".join(formatted_abstracts)
|
|
|
|
|
334 |
prompt = f"""
|
335 |
+
Provide a factual summary structured as:
|
336 |
+
- Background: Context and origin only if present
|
337 |
+
- Methods: Key procedures and approaches
|
338 |
+
- Results: Specific findings with numbers
|
339 |
+
- Conclusions: Main implications
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
340 |
|
341 |
+
Requirements:
|
342 |
+
- Present sections sequentially
|
343 |
+
- Merge related points within sections
|
344 |
+
- Complete all sentences
|
345 |
+
- Avoid repeating section headers
|
346 |
+
- Use original terminology
|
347 |
+
|
348 |
+
Content: {abstracts_content}
|
349 |
+
"""
|
350 |
|
351 |
+
inputs = tokenizer(prompt, return_tensors="pt", max_length=1024, truncation=True)
|
352 |
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
353 |
|
354 |
with torch.no_grad():
|
|
|
356 |
**{
|
357 |
"input_ids": inputs["input_ids"],
|
358 |
"attention_mask": inputs["attention_mask"],
|
359 |
+
"max_length": 512,
|
360 |
+
"min_length": 200,
|
361 |
"num_beams": 4,
|
362 |
"length_penalty": 2.0,
|
363 |
+
"no_repeat_ngram_size": 3,
|
364 |
"temperature": 0.7,
|
365 |
"do_sample": False
|
366 |
}
|
367 |
)
|
|
|
|
|
368 |
|
369 |
+
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
370 |
return post_process_summary(summary)
|
371 |
|
372 |
+
def post_process_summary(summary):
|
373 |
+
"""Post-process summary with improved section handling and formatting."""
|
374 |
+
if not summary:
|
375 |
+
return summary
|
376 |
+
|
377 |
+
valid_sections = ['Background', 'Methods', 'Results', 'Conclusions']
|
378 |
+
sections = {}
|
379 |
+
current_section = None
|
380 |
+
current_content = []
|
381 |
+
|
382 |
+
# Pre-clean section headers
|
383 |
+
summary = re.sub(r'\b(?:results?\s*:\s*and\s*conclusions?\s*:)', 'Results:', summary, flags=re.IGNORECASE)
|
384 |
+
summary = re.sub(r'\bresults?\s*and\s*conclusions?\s*:', 'Results:', summary, flags=re.IGNORECASE)
|
385 |
+
|
386 |
+
# Process line by line
|
387 |
+
lines = [line.strip() for line in summary.split('.') if line.strip()]
|
388 |
+
for i, line in enumerate(lines):
|
389 |
+
section_match = None
|
390 |
+
for section in valid_sections:
|
391 |
+
if re.match(fr'\b{section}:', line, re.IGNORECASE):
|
392 |
+
section_match = section
|
393 |
+
break
|
394 |
+
|
395 |
+
if section_match:
|
396 |
+
if current_section:
|
397 |
+
content = ' '.join(current_content)
|
398 |
+
if content:
|
399 |
+
sections[current_section] = content
|
400 |
+
current_section = section_match
|
401 |
+
content = re.sub(fr'\b{section_match}:\s*', '', line, flags=re.IGNORECASE)
|
402 |
+
current_content = [content] if content else []
|
403 |
+
elif current_section:
|
404 |
+
# Prevent section header splitting
|
405 |
+
if not any(sect.lower() in line.lower() for sect in valid_sections):
|
406 |
+
current_content.append(line)
|
407 |
+
|
408 |
+
if current_section and current_content:
|
409 |
+
sections[current_section] = ' '.join(current_content)
|
410 |
+
|
411 |
+
# Format sections
|
412 |
+
formatted_sections = []
|
413 |
+
for section in valid_sections:
|
414 |
+
if section in sections:
|
415 |
+
content = sections[section].strip()
|
416 |
+
if content:
|
417 |
+
# Complete truncated sentences
|
418 |
+
if not re.search(r'[.!?]$', content):
|
419 |
+
if len(content.split()) >= 3: # Only complete if substantial
|
420 |
+
content += '.'
|
421 |
+
|
422 |
+
# Ensure capitalization
|
423 |
+
content = content[0].upper() + content[1:]
|
424 |
+
|
425 |
+
# Fix double periods
|
426 |
+
content = re.sub(r'\.+', '.', content)
|
427 |
+
|
428 |
+
formatted_sections.append(f"{section}: {content}")
|
429 |
+
|
430 |
+
return ' '.join(formatted_sections)
|
431 |
+
|
432 |
+
|
433 |
|
434 |
def process_papers_in_batches(df, model, tokenizer, batch_size=2):
|
435 |
"""Process papers in batches for better efficiency"""
|
|
|
699 |
if not st.session_state.get('focused_summary_generated', False):
|
700 |
try:
|
701 |
with st.spinner("Analyzing relevant papers..."):
|
|
|
702 |
if st.session_state.text_processor is None:
|
703 |
st.session_state.text_processor = TextProcessor()
|
704 |
+
|
705 |
+
model, tokenizer = get_model("question_focused")
|
706 |
+
if model is None or tokenizer is None:
|
707 |
+
raise Exception("Failed to load question-focused model")
|
708 |
+
|
|
|
|
|
709 |
results = st.session_state.text_processor.find_most_relevant_abstracts(
|
710 |
question,
|
711 |
df['Abstract'].tolist(),
|
712 |
top_k=5
|
713 |
)
|
714 |
+
|
715 |
if not results['top_indices']:
|
716 |
+
st.warning("No papers found relevant to your question")
|
|
|
|
|
|
|
|
|
|
|
717 |
return
|
718 |
+
|
719 |
+
# Store relevant papers and scores
|
720 |
+
st.session_state.relevant_papers = df.iloc[results['top_indices']]
|
721 |
+
st.session_state.relevance_scores = results['scores']
|
722 |
+
|
723 |
+
relevant_abstracts = df['Abstract'].iloc[results['top_indices']].tolist()
|
724 |
+
st.session_state.focused_summary = generate_focused_summary(
|
725 |
+
question,
|
726 |
+
relevant_abstracts,
|
727 |
+
model,
|
728 |
+
tokenizer
|
729 |
+
)
|
730 |
+
st.session_state.focused_summary_generated = True
|
731 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
732 |
except Exception as e:
|
733 |
st.error(f"Error generating focused summary: {str(e)}")
|
734 |
reset_processing_state()
|
735 |
+
|
736 |
+
finally:
|
737 |
+
cleanup_model(model, tokenizer)
|
738 |
|
739 |
# Display focused summary results
|
740 |
if st.session_state.get('focused_summary_generated', False):
|