Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -36,6 +36,7 @@ def load_model(model_type):
|
|
| 36 |
device = "cpu" # Force CPU usage
|
| 37 |
|
| 38 |
if model_type == "summarize":
|
|
|
|
| 39 |
model = AutoModelForSeq2SeqLM.from_pretrained(
|
| 40 |
"pendar02/bart-large-pubmedd",
|
| 41 |
cache_dir="./models",
|
|
@@ -150,219 +151,65 @@ def post_process_summary(summary):
|
|
| 150 |
return cleaned_summary
|
| 151 |
|
| 152 |
def improve_summary_generation(text, model, tokenizer):
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
word_count = len(text.split())
|
| 159 |
-
if word_count < 100: # Increased minimum length for medical texts
|
| 160 |
-
return text
|
| 161 |
-
|
| 162 |
-
# Preprocess text
|
| 163 |
-
formatted_text = preprocess_text(text)
|
| 164 |
-
|
| 165 |
-
# Prepare inputs
|
| 166 |
-
inputs = tokenizer(
|
| 167 |
-
formatted_text,
|
| 168 |
-
return_tensors="pt",
|
| 169 |
-
max_length=1024,
|
| 170 |
-
truncation=True,
|
| 171 |
-
padding=True
|
| 172 |
)
|
|
|
|
|
|
|
|
|
|
| 173 |
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
| 174 |
|
| 175 |
-
# Generate summary with parameters tuned for biomedical text
|
| 176 |
with torch.no_grad():
|
| 177 |
summary_ids = model.generate(
|
| 178 |
**{
|
| 179 |
"input_ids": inputs["input_ids"],
|
| 180 |
"attention_mask": inputs["attention_mask"],
|
| 181 |
-
"max_length":
|
| 182 |
-
"min_length":
|
| 183 |
-
"num_beams":
|
| 184 |
-
"length_penalty":
|
| 185 |
"no_repeat_ngram_size": 3,
|
| 186 |
-
"
|
| 187 |
-
"
|
| 188 |
-
"top_p": 0.95, # Nucleus sampling
|
| 189 |
-
"temperature": 0.85, # Slightly higher temperature for medical terms
|
| 190 |
-
"repetition_penalty": 1.5 # Increased to avoid repeated stats/numbers
|
| 191 |
}
|
| 192 |
)
|
| 193 |
|
| 194 |
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
| 195 |
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
return summary
|
| 200 |
-
|
| 201 |
-
def post_process_medical_summary(summary):
|
| 202 |
-
"""Special post-processing for medical/scientific summaries"""
|
| 203 |
-
if not summary:
|
| 204 |
-
return summary
|
| 205 |
-
|
| 206 |
-
# Fix common medical text issues
|
| 207 |
-
summary = (summary
|
| 208 |
-
.replace(" p =", " p=") # Fix p-value spacing
|
| 209 |
-
.replace(" n =", " n=") # Fix sample size spacing
|
| 210 |
-
.replace("( ", "(") # Fix parentheses spacing
|
| 211 |
-
.replace(" )", ")")
|
| 212 |
-
.replace("vs.", "versus") # Expand abbreviations
|
| 213 |
-
.replace("..", ".") # Fix double periods
|
| 214 |
-
)
|
| 215 |
-
|
| 216 |
-
# Ensure statistical significance symbols are correct
|
| 217 |
-
summary = (summary
|
| 218 |
-
.replace("p < ", "p<")
|
| 219 |
-
.replace("p > ", "p>")
|
| 220 |
-
.replace("P < ", "p<")
|
| 221 |
-
.replace("P > ", "p>")
|
| 222 |
-
)
|
| 223 |
-
|
| 224 |
-
# Fix number formatting
|
| 225 |
-
summary = (summary
|
| 226 |
-
.replace(" +/- ", "±")
|
| 227 |
-
.replace(" ± ", "±")
|
| 228 |
-
)
|
| 229 |
-
|
| 230 |
-
# Split into sentences and process each
|
| 231 |
-
sentences = [s.strip() for s in summary.split('.')]
|
| 232 |
-
processed_sentences = []
|
| 233 |
-
|
| 234 |
-
for sentence in sentences:
|
| 235 |
-
if sentence:
|
| 236 |
-
# Capitalize first letter
|
| 237 |
-
sentence = sentence[0].upper() + sentence[1:] if sentence else sentence
|
| 238 |
-
|
| 239 |
-
# Fix common medical abbreviations spacing
|
| 240 |
-
sentence = (sentence
|
| 241 |
-
.replace(" et al ", " et al. ")
|
| 242 |
-
.replace("et al.", "et al.") # Fix double period
|
| 243 |
-
)
|
| 244 |
-
|
| 245 |
-
processed_sentences.append(sentence)
|
| 246 |
-
|
| 247 |
-
# Join sentences
|
| 248 |
-
summary = '. '.join(processed_sentences)
|
| 249 |
-
|
| 250 |
-
# Ensure proper ending
|
| 251 |
-
if summary and not summary.endswith('.'):
|
| 252 |
-
summary += '.'
|
| 253 |
-
|
| 254 |
-
return summary
|
| 255 |
-
|
| 256 |
-
def post_process_medical_summary(summary):
|
| 257 |
-
"""Special post-processing for medical/scientific summaries"""
|
| 258 |
-
if not summary:
|
| 259 |
-
return summary
|
| 260 |
-
|
| 261 |
-
# Fix common medical text issues
|
| 262 |
-
summary = (summary
|
| 263 |
-
.replace(" p =", " p=") # Fix p-value spacing
|
| 264 |
-
.replace(" n =", " n=") # Fix sample size spacing
|
| 265 |
-
.replace("( ", "(") # Fix parentheses spacing
|
| 266 |
-
.replace(" )", ")")
|
| 267 |
-
.replace("vs.", "versus") # Expand abbreviations
|
| 268 |
-
.replace("..", ".") # Fix double periods
|
| 269 |
-
)
|
| 270 |
-
|
| 271 |
-
# Ensure statistical significance symbols are correct
|
| 272 |
-
summary = (summary
|
| 273 |
-
.replace("p < ", "p<")
|
| 274 |
-
.replace("p > ", "p>")
|
| 275 |
-
.replace("P < ", "p<")
|
| 276 |
-
.replace("P > ", "p>")
|
| 277 |
-
)
|
| 278 |
-
|
| 279 |
-
# Fix number formatting
|
| 280 |
-
summary = (summary
|
| 281 |
-
.replace(" +/- ", "±")
|
| 282 |
-
.replace(" ± ", "±")
|
| 283 |
-
)
|
| 284 |
-
|
| 285 |
-
# Split into sentences and process each
|
| 286 |
-
sentences = [s.strip() for s in summary.split('.')]
|
| 287 |
-
processed_sentences = []
|
| 288 |
-
|
| 289 |
-
for sentence in sentences:
|
| 290 |
-
if sentence:
|
| 291 |
-
# Capitalize first letter
|
| 292 |
-
sentence = sentence[0].upper() + sentence[1:] if sentence else sentence
|
| 293 |
-
|
| 294 |
-
# Fix common medical abbreviations spacing
|
| 295 |
-
sentence = (sentence
|
| 296 |
-
.replace(" et al ", " et al. ")
|
| 297 |
-
.replace("et al.", "et al.") # Fix double period
|
| 298 |
-
)
|
| 299 |
-
|
| 300 |
-
processed_sentences.append(sentence)
|
| 301 |
-
|
| 302 |
-
# Join sentences
|
| 303 |
-
summary = '. '.join(processed_sentences)
|
| 304 |
-
|
| 305 |
-
# Ensure proper ending
|
| 306 |
-
if summary and not summary.endswith('.'):
|
| 307 |
-
summary += '.'
|
| 308 |
-
|
| 309 |
-
return summary
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
def post_process_medical_summary(summary):
|
| 313 |
-
"""Special post-processing for medical/scientific summaries"""
|
| 314 |
if not summary:
|
| 315 |
return summary
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 316 |
|
| 317 |
-
#
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
.replace("vs.", "versus") # Expand abbreviations
|
| 324 |
-
.replace("..", ".") # Fix double periods
|
| 325 |
-
)
|
| 326 |
-
|
| 327 |
-
# Ensure statistical significance symbols are correct
|
| 328 |
-
summary = (summary
|
| 329 |
-
.replace("p < ", "p<")
|
| 330 |
-
.replace("p > ", "p>")
|
| 331 |
-
.replace("P < ", "p<")
|
| 332 |
-
.replace("P > ", "p>")
|
| 333 |
-
)
|
| 334 |
-
|
| 335 |
-
# Fix number formatting
|
| 336 |
-
summary = (summary
|
| 337 |
-
.replace(" +/- ", "±")
|
| 338 |
-
.replace(" ± ", "±")
|
| 339 |
-
)
|
| 340 |
-
|
| 341 |
-
# Split into sentences and process each
|
| 342 |
-
sentences = [s.strip() for s in summary.split('.')]
|
| 343 |
-
processed_sentences = []
|
| 344 |
-
|
| 345 |
-
for sentence in sentences:
|
| 346 |
-
if sentence:
|
| 347 |
-
# Capitalize first letter
|
| 348 |
-
sentence = sentence[0].upper() + sentence[1:] if sentence else sentence
|
| 349 |
-
|
| 350 |
-
# Fix common medical abbreviations spacing
|
| 351 |
-
sentence = (sentence
|
| 352 |
-
.replace(" et al ", " et al. ")
|
| 353 |
-
.replace("et al.", "et al.") # Fix double period
|
| 354 |
-
)
|
| 355 |
-
|
| 356 |
-
processed_sentences.append(sentence)
|
| 357 |
-
|
| 358 |
-
# Join sentences
|
| 359 |
-
summary = '. '.join(processed_sentences)
|
| 360 |
-
|
| 361 |
-
# Ensure proper ending
|
| 362 |
-
if summary and not summary.endswith('.'):
|
| 363 |
-
summary += '.'
|
| 364 |
-
|
| 365 |
-
return summary
|
| 366 |
|
| 367 |
def generate_focused_summary(question, abstracts, model, tokenizer):
|
| 368 |
"""Generate focused summary based on question"""
|
|
@@ -388,6 +235,23 @@ def generate_focused_summary(question, abstracts, model, tokenizer):
|
|
| 388 |
|
| 389 |
return tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
| 390 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 391 |
def main():
|
| 392 |
st.title("🔬 Biomedical Papers Analysis")
|
| 393 |
|
|
|
|
| 36 |
device = "cpu" # Force CPU usage
|
| 37 |
|
| 38 |
if model_type == "summarize":
|
| 39 |
+
# Load the new fine-tuned model directly
|
| 40 |
model = AutoModelForSeq2SeqLM.from_pretrained(
|
| 41 |
"pendar02/bart-large-pubmedd",
|
| 42 |
cache_dir="./models",
|
|
|
|
| 151 |
return cleaned_summary
|
| 152 |
|
| 153 |
def improve_summary_generation(text, model, tokenizer):
|
| 154 |
+
# Add a more specific prompt
|
| 155 |
+
formatted_text = (
|
| 156 |
+
"Summarize the following medical research paper, focusing on: "
|
| 157 |
+
"1) Study objectives 2) Methods 3) Key findings 4) Main conclusions. "
|
| 158 |
+
"Text: " + preprocess_text(text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
)
|
| 160 |
+
|
| 161 |
+
# Adjust generation parameters
|
| 162 |
+
inputs = tokenizer(formatted_text, return_tensors="pt", max_length=1024, truncation=True)
|
| 163 |
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
| 164 |
|
|
|
|
| 165 |
with torch.no_grad():
|
| 166 |
summary_ids = model.generate(
|
| 167 |
**{
|
| 168 |
"input_ids": inputs["input_ids"],
|
| 169 |
"attention_mask": inputs["attention_mask"],
|
| 170 |
+
"max_length": 200,
|
| 171 |
+
"min_length": 50,
|
| 172 |
+
"num_beams": 5,
|
| 173 |
+
"length_penalty": 1.5,
|
| 174 |
"no_repeat_ngram_size": 3,
|
| 175 |
+
"temperature": 0.7,
|
| 176 |
+
"repetition_penalty": 1.5 # Increased to reduce repetition
|
|
|
|
|
|
|
|
|
|
| 177 |
}
|
| 178 |
)
|
| 179 |
|
| 180 |
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
| 181 |
|
| 182 |
+
def post_process_summary(summary):
|
| 183 |
+
"""Enhanced post-processing to catch common errors"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 184 |
if not summary:
|
| 185 |
return summary
|
| 186 |
+
|
| 187 |
+
# Remove contradictory age statements
|
| 188 |
+
age_statements = []
|
| 189 |
+
lines = summary.split('.')
|
| 190 |
+
cleaned_lines = []
|
| 191 |
+
for line in lines:
|
| 192 |
+
if "age" not in line.lower():
|
| 193 |
+
cleaned_lines.append(line)
|
| 194 |
+
elif not age_statements: # Only keep first age statement
|
| 195 |
+
age_statements.append(line)
|
| 196 |
+
cleaned_lines.append(line)
|
| 197 |
+
|
| 198 |
+
# Remove redundant statements
|
| 199 |
+
seen_content = set()
|
| 200 |
+
unique_lines = []
|
| 201 |
+
for line in cleaned_lines:
|
| 202 |
+
line_core = ' '.join(sorted(line.lower().split())) # Normalize for comparison
|
| 203 |
+
if line_core not in seen_content:
|
| 204 |
+
seen_content.add(line_core)
|
| 205 |
+
unique_lines.append(line)
|
| 206 |
|
| 207 |
+
# Join sentences with proper spacing and punctuation
|
| 208 |
+
cleaned_summary = '. '.join(s.strip() for s in unique_lines if s.strip())
|
| 209 |
+
if cleaned_summary and not cleaned_summary.endswith('.'):
|
| 210 |
+
cleaned_summary += '.'
|
| 211 |
+
|
| 212 |
+
return cleaned_summary
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 213 |
|
| 214 |
def generate_focused_summary(question, abstracts, model, tokenizer):
|
| 215 |
"""Generate focused summary based on question"""
|
|
|
|
| 235 |
|
| 236 |
return tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
| 237 |
|
| 238 |
+
|
| 239 |
+
def validate_summary(summary, original_text):
|
| 240 |
+
"""Validate summary content against original text"""
|
| 241 |
+
# Check for age inconsistencies
|
| 242 |
+
age_mentions = re.findall(r'(\d+\.?\d*)\s*years?', summary.lower())
|
| 243 |
+
if len(age_mentions) > 1: # Multiple age mentions
|
| 244 |
+
return False
|
| 245 |
+
|
| 246 |
+
# Check for repetitive sentences
|
| 247 |
+
sentences = summary.split('.')
|
| 248 |
+
unique_sentences = set(s.strip().lower() for s in sentences if s.strip())
|
| 249 |
+
if len(sentences) - len(unique_sentences) > 1: # More than one duplicate
|
| 250 |
+
return False
|
| 251 |
+
|
| 252 |
+
return True
|
| 253 |
+
|
| 254 |
+
|
| 255 |
def main():
|
| 256 |
st.title("🔬 Biomedical Papers Analysis")
|
| 257 |
|