Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -36,6 +36,7 @@ def load_model(model_type):
|
|
36 |
device = "cpu" # Force CPU usage
|
37 |
|
38 |
if model_type == "summarize":
|
|
|
39 |
model = AutoModelForSeq2SeqLM.from_pretrained(
|
40 |
"pendar02/bart-large-pubmedd",
|
41 |
cache_dir="./models",
|
@@ -150,219 +151,65 @@ def post_process_summary(summary):
|
|
150 |
return cleaned_summary
|
151 |
|
152 |
def improve_summary_generation(text, model, tokenizer):
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
word_count = len(text.split())
|
159 |
-
if word_count < 100: # Increased minimum length for medical texts
|
160 |
-
return text
|
161 |
-
|
162 |
-
# Preprocess text
|
163 |
-
formatted_text = preprocess_text(text)
|
164 |
-
|
165 |
-
# Prepare inputs
|
166 |
-
inputs = tokenizer(
|
167 |
-
formatted_text,
|
168 |
-
return_tensors="pt",
|
169 |
-
max_length=1024,
|
170 |
-
truncation=True,
|
171 |
-
padding=True
|
172 |
)
|
|
|
|
|
|
|
173 |
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
174 |
|
175 |
-
# Generate summary with parameters tuned for biomedical text
|
176 |
with torch.no_grad():
|
177 |
summary_ids = model.generate(
|
178 |
**{
|
179 |
"input_ids": inputs["input_ids"],
|
180 |
"attention_mask": inputs["attention_mask"],
|
181 |
-
"max_length":
|
182 |
-
"min_length":
|
183 |
-
"num_beams":
|
184 |
-
"length_penalty":
|
185 |
"no_repeat_ngram_size": 3,
|
186 |
-
"
|
187 |
-
"
|
188 |
-
"top_p": 0.95, # Nucleus sampling
|
189 |
-
"temperature": 0.85, # Slightly higher temperature for medical terms
|
190 |
-
"repetition_penalty": 1.5 # Increased to avoid repeated stats/numbers
|
191 |
}
|
192 |
)
|
193 |
|
194 |
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
195 |
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
return summary
|
200 |
-
|
201 |
-
def post_process_medical_summary(summary):
|
202 |
-
"""Special post-processing for medical/scientific summaries"""
|
203 |
-
if not summary:
|
204 |
-
return summary
|
205 |
-
|
206 |
-
# Fix common medical text issues
|
207 |
-
summary = (summary
|
208 |
-
.replace(" p =", " p=") # Fix p-value spacing
|
209 |
-
.replace(" n =", " n=") # Fix sample size spacing
|
210 |
-
.replace("( ", "(") # Fix parentheses spacing
|
211 |
-
.replace(" )", ")")
|
212 |
-
.replace("vs.", "versus") # Expand abbreviations
|
213 |
-
.replace("..", ".") # Fix double periods
|
214 |
-
)
|
215 |
-
|
216 |
-
# Ensure statistical significance symbols are correct
|
217 |
-
summary = (summary
|
218 |
-
.replace("p < ", "p<")
|
219 |
-
.replace("p > ", "p>")
|
220 |
-
.replace("P < ", "p<")
|
221 |
-
.replace("P > ", "p>")
|
222 |
-
)
|
223 |
-
|
224 |
-
# Fix number formatting
|
225 |
-
summary = (summary
|
226 |
-
.replace(" +/- ", "±")
|
227 |
-
.replace(" ± ", "±")
|
228 |
-
)
|
229 |
-
|
230 |
-
# Split into sentences and process each
|
231 |
-
sentences = [s.strip() for s in summary.split('.')]
|
232 |
-
processed_sentences = []
|
233 |
-
|
234 |
-
for sentence in sentences:
|
235 |
-
if sentence:
|
236 |
-
# Capitalize first letter
|
237 |
-
sentence = sentence[0].upper() + sentence[1:] if sentence else sentence
|
238 |
-
|
239 |
-
# Fix common medical abbreviations spacing
|
240 |
-
sentence = (sentence
|
241 |
-
.replace(" et al ", " et al. ")
|
242 |
-
.replace("et al.", "et al.") # Fix double period
|
243 |
-
)
|
244 |
-
|
245 |
-
processed_sentences.append(sentence)
|
246 |
-
|
247 |
-
# Join sentences
|
248 |
-
summary = '. '.join(processed_sentences)
|
249 |
-
|
250 |
-
# Ensure proper ending
|
251 |
-
if summary and not summary.endswith('.'):
|
252 |
-
summary += '.'
|
253 |
-
|
254 |
-
return summary
|
255 |
-
|
256 |
-
def post_process_medical_summary(summary):
|
257 |
-
"""Special post-processing for medical/scientific summaries"""
|
258 |
-
if not summary:
|
259 |
-
return summary
|
260 |
-
|
261 |
-
# Fix common medical text issues
|
262 |
-
summary = (summary
|
263 |
-
.replace(" p =", " p=") # Fix p-value spacing
|
264 |
-
.replace(" n =", " n=") # Fix sample size spacing
|
265 |
-
.replace("( ", "(") # Fix parentheses spacing
|
266 |
-
.replace(" )", ")")
|
267 |
-
.replace("vs.", "versus") # Expand abbreviations
|
268 |
-
.replace("..", ".") # Fix double periods
|
269 |
-
)
|
270 |
-
|
271 |
-
# Ensure statistical significance symbols are correct
|
272 |
-
summary = (summary
|
273 |
-
.replace("p < ", "p<")
|
274 |
-
.replace("p > ", "p>")
|
275 |
-
.replace("P < ", "p<")
|
276 |
-
.replace("P > ", "p>")
|
277 |
-
)
|
278 |
-
|
279 |
-
# Fix number formatting
|
280 |
-
summary = (summary
|
281 |
-
.replace(" +/- ", "±")
|
282 |
-
.replace(" ± ", "±")
|
283 |
-
)
|
284 |
-
|
285 |
-
# Split into sentences and process each
|
286 |
-
sentences = [s.strip() for s in summary.split('.')]
|
287 |
-
processed_sentences = []
|
288 |
-
|
289 |
-
for sentence in sentences:
|
290 |
-
if sentence:
|
291 |
-
# Capitalize first letter
|
292 |
-
sentence = sentence[0].upper() + sentence[1:] if sentence else sentence
|
293 |
-
|
294 |
-
# Fix common medical abbreviations spacing
|
295 |
-
sentence = (sentence
|
296 |
-
.replace(" et al ", " et al. ")
|
297 |
-
.replace("et al.", "et al.") # Fix double period
|
298 |
-
)
|
299 |
-
|
300 |
-
processed_sentences.append(sentence)
|
301 |
-
|
302 |
-
# Join sentences
|
303 |
-
summary = '. '.join(processed_sentences)
|
304 |
-
|
305 |
-
# Ensure proper ending
|
306 |
-
if summary and not summary.endswith('.'):
|
307 |
-
summary += '.'
|
308 |
-
|
309 |
-
return summary
|
310 |
-
|
311 |
-
|
312 |
-
def post_process_medical_summary(summary):
|
313 |
-
"""Special post-processing for medical/scientific summaries"""
|
314 |
if not summary:
|
315 |
return summary
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
316 |
|
317 |
-
#
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
.replace("vs.", "versus") # Expand abbreviations
|
324 |
-
.replace("..", ".") # Fix double periods
|
325 |
-
)
|
326 |
-
|
327 |
-
# Ensure statistical significance symbols are correct
|
328 |
-
summary = (summary
|
329 |
-
.replace("p < ", "p<")
|
330 |
-
.replace("p > ", "p>")
|
331 |
-
.replace("P < ", "p<")
|
332 |
-
.replace("P > ", "p>")
|
333 |
-
)
|
334 |
-
|
335 |
-
# Fix number formatting
|
336 |
-
summary = (summary
|
337 |
-
.replace(" +/- ", "±")
|
338 |
-
.replace(" ± ", "±")
|
339 |
-
)
|
340 |
-
|
341 |
-
# Split into sentences and process each
|
342 |
-
sentences = [s.strip() for s in summary.split('.')]
|
343 |
-
processed_sentences = []
|
344 |
-
|
345 |
-
for sentence in sentences:
|
346 |
-
if sentence:
|
347 |
-
# Capitalize first letter
|
348 |
-
sentence = sentence[0].upper() + sentence[1:] if sentence else sentence
|
349 |
-
|
350 |
-
# Fix common medical abbreviations spacing
|
351 |
-
sentence = (sentence
|
352 |
-
.replace(" et al ", " et al. ")
|
353 |
-
.replace("et al.", "et al.") # Fix double period
|
354 |
-
)
|
355 |
-
|
356 |
-
processed_sentences.append(sentence)
|
357 |
-
|
358 |
-
# Join sentences
|
359 |
-
summary = '. '.join(processed_sentences)
|
360 |
-
|
361 |
-
# Ensure proper ending
|
362 |
-
if summary and not summary.endswith('.'):
|
363 |
-
summary += '.'
|
364 |
-
|
365 |
-
return summary
|
366 |
|
367 |
def generate_focused_summary(question, abstracts, model, tokenizer):
|
368 |
"""Generate focused summary based on question"""
|
@@ -388,6 +235,23 @@ def generate_focused_summary(question, abstracts, model, tokenizer):
|
|
388 |
|
389 |
return tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
390 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
391 |
def main():
|
392 |
st.title("🔬 Biomedical Papers Analysis")
|
393 |
|
|
|
36 |
device = "cpu" # Force CPU usage
|
37 |
|
38 |
if model_type == "summarize":
|
39 |
+
# Load the new fine-tuned model directly
|
40 |
model = AutoModelForSeq2SeqLM.from_pretrained(
|
41 |
"pendar02/bart-large-pubmedd",
|
42 |
cache_dir="./models",
|
|
|
151 |
return cleaned_summary
|
152 |
|
153 |
def improve_summary_generation(text, model, tokenizer):
|
154 |
+
# Add a more specific prompt
|
155 |
+
formatted_text = (
|
156 |
+
"Summarize the following medical research paper, focusing on: "
|
157 |
+
"1) Study objectives 2) Methods 3) Key findings 4) Main conclusions. "
|
158 |
+
"Text: " + preprocess_text(text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
)
|
160 |
+
|
161 |
+
# Adjust generation parameters
|
162 |
+
inputs = tokenizer(formatted_text, return_tensors="pt", max_length=1024, truncation=True)
|
163 |
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
164 |
|
|
|
165 |
with torch.no_grad():
|
166 |
summary_ids = model.generate(
|
167 |
**{
|
168 |
"input_ids": inputs["input_ids"],
|
169 |
"attention_mask": inputs["attention_mask"],
|
170 |
+
"max_length": 200,
|
171 |
+
"min_length": 50,
|
172 |
+
"num_beams": 5,
|
173 |
+
"length_penalty": 1.5,
|
174 |
"no_repeat_ngram_size": 3,
|
175 |
+
"temperature": 0.7,
|
176 |
+
"repetition_penalty": 1.5 # Increased to reduce repetition
|
|
|
|
|
|
|
177 |
}
|
178 |
)
|
179 |
|
180 |
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
181 |
|
182 |
+
def post_process_summary(summary):
|
183 |
+
"""Enhanced post-processing to catch common errors"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
if not summary:
|
185 |
return summary
|
186 |
+
|
187 |
+
# Remove contradictory age statements
|
188 |
+
age_statements = []
|
189 |
+
lines = summary.split('.')
|
190 |
+
cleaned_lines = []
|
191 |
+
for line in lines:
|
192 |
+
if "age" not in line.lower():
|
193 |
+
cleaned_lines.append(line)
|
194 |
+
elif not age_statements: # Only keep first age statement
|
195 |
+
age_statements.append(line)
|
196 |
+
cleaned_lines.append(line)
|
197 |
+
|
198 |
+
# Remove redundant statements
|
199 |
+
seen_content = set()
|
200 |
+
unique_lines = []
|
201 |
+
for line in cleaned_lines:
|
202 |
+
line_core = ' '.join(sorted(line.lower().split())) # Normalize for comparison
|
203 |
+
if line_core not in seen_content:
|
204 |
+
seen_content.add(line_core)
|
205 |
+
unique_lines.append(line)
|
206 |
|
207 |
+
# Join sentences with proper spacing and punctuation
|
208 |
+
cleaned_summary = '. '.join(s.strip() for s in unique_lines if s.strip())
|
209 |
+
if cleaned_summary and not cleaned_summary.endswith('.'):
|
210 |
+
cleaned_summary += '.'
|
211 |
+
|
212 |
+
return cleaned_summary
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
213 |
|
214 |
def generate_focused_summary(question, abstracts, model, tokenizer):
|
215 |
"""Generate focused summary based on question"""
|
|
|
235 |
|
236 |
return tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
237 |
|
238 |
+
|
239 |
+
def validate_summary(summary, original_text):
|
240 |
+
"""Validate summary content against original text"""
|
241 |
+
# Check for age inconsistencies
|
242 |
+
age_mentions = re.findall(r'(\d+\.?\d*)\s*years?', summary.lower())
|
243 |
+
if len(age_mentions) > 1: # Multiple age mentions
|
244 |
+
return False
|
245 |
+
|
246 |
+
# Check for repetitive sentences
|
247 |
+
sentences = summary.split('.')
|
248 |
+
unique_sentences = set(s.strip().lower() for s in sentences if s.strip())
|
249 |
+
if len(sentences) - len(unique_sentences) > 1: # More than one duplicate
|
250 |
+
return False
|
251 |
+
|
252 |
+
return True
|
253 |
+
|
254 |
+
|
255 |
def main():
|
256 |
st.title("🔬 Biomedical Papers Analysis")
|
257 |
|