Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,10 @@
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
import torch
|
4 |
-
from transformers import AutoTokenizer,
|
5 |
from peft import PeftModel
|
6 |
from text_processing import TextProcessor
|
7 |
import gc
|
8 |
-
import time
|
9 |
from pathlib import Path
|
10 |
|
11 |
# Configure page
|
@@ -22,40 +21,31 @@ if 'summaries' not in st.session_state:
|
|
22 |
st.session_state.summaries = None
|
23 |
if 'text_processor' not in st.session_state:
|
24 |
st.session_state.text_processor = None
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
gc.collect()
|
30 |
-
|
31 |
-
# Clear CUDA cache if available
|
32 |
-
if torch.cuda.is_available():
|
33 |
-
torch.cuda.empty_cache()
|
34 |
-
|
35 |
-
# Set torch to use CPU
|
36 |
-
torch.set_num_threads(8) # Use half of available CPU threads for each model
|
37 |
|
38 |
def load_model(model_type):
|
39 |
-
"""Load appropriate model based on type with
|
40 |
-
manage_resources()
|
41 |
-
|
42 |
try:
|
|
|
|
|
|
|
|
|
43 |
if model_type == "summarize":
|
44 |
base_model = AutoModelForSeq2SeqLM.from_pretrained(
|
45 |
"facebook/bart-large-cnn",
|
46 |
cache_dir="./models",
|
47 |
-
|
48 |
torch_dtype=torch.float32
|
49 |
-
)
|
50 |
-
|
51 |
model = PeftModel.from_pretrained(
|
52 |
base_model,
|
53 |
"pendar02/results",
|
54 |
-
device_map=
|
55 |
-
torch_dtype=torch.float32
|
56 |
-
|
57 |
-
).to("cpu") # Force CPU
|
58 |
-
|
59 |
tokenizer = AutoTokenizer.from_pretrained(
|
60 |
"facebook/bart-large-cnn",
|
61 |
cache_dir="./models"
|
@@ -64,36 +54,43 @@ def load_model(model_type):
|
|
64 |
base_model = AutoModelForSeq2SeqLM.from_pretrained(
|
65 |
"GanjinZero/biobart-base",
|
66 |
cache_dir="./models",
|
67 |
-
|
68 |
torch_dtype=torch.float32
|
69 |
-
)
|
70 |
-
|
71 |
model = PeftModel.from_pretrained(
|
72 |
base_model,
|
73 |
"pendar02/biobart-finetune",
|
74 |
-
device_map=
|
75 |
-
torch_dtype=torch.float32
|
76 |
-
|
77 |
-
).to("cpu") # Force CPU
|
78 |
-
|
79 |
tokenizer = AutoTokenizer.from_pretrained(
|
80 |
"GanjinZero/biobart-base",
|
81 |
cache_dir="./models"
|
82 |
)
|
83 |
|
84 |
-
model.eval()
|
85 |
return model, tokenizer
|
86 |
except Exception as e:
|
87 |
st.error(f"Error loading model: {str(e)}")
|
88 |
raise
|
89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
@st.cache_data
|
91 |
def process_excel(uploaded_file):
|
92 |
"""Process uploaded Excel file"""
|
93 |
try:
|
94 |
df = pd.read_excel(uploaded_file)
|
95 |
required_columns = ['Abstract', 'Article Title', 'Authors',
|
96 |
-
|
97 |
|
98 |
# Check required columns
|
99 |
missing_columns = [col for col in required_columns if col not in df.columns]
|
@@ -127,9 +124,18 @@ def generate_summary(text, model, tokenizer):
|
|
127 |
if not isinstance(text, str) or not text.strip():
|
128 |
return "No abstract available to summarize."
|
129 |
|
|
|
|
|
|
|
|
|
|
|
130 |
# Preprocess the text first
|
131 |
formatted_text = preprocess_text(text)
|
132 |
|
|
|
|
|
|
|
|
|
133 |
inputs = tokenizer(formatted_text, return_tensors="pt", max_length=1024, truncation=True)
|
134 |
|
135 |
with torch.no_grad():
|
@@ -137,15 +143,22 @@ def generate_summary(text, model, tokenizer):
|
|
137 |
**{
|
138 |
"input_ids": inputs["input_ids"],
|
139 |
"attention_mask": inputs["attention_mask"],
|
140 |
-
"max_length":
|
141 |
-
"min_length":
|
142 |
"num_beams": 4,
|
143 |
"length_penalty": 2.0,
|
144 |
-
"early_stopping": True
|
|
|
145 |
}
|
146 |
)
|
147 |
|
148 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
|
150 |
def generate_focused_summary(question, abstracts, model, tokenizer):
|
151 |
"""Generate focused summary based on question"""
|
@@ -173,11 +186,6 @@ def generate_focused_summary(question, abstracts, model, tokenizer):
|
|
173 |
def main():
|
174 |
st.title("🔬 Biomedical Papers Analysis")
|
175 |
|
176 |
-
# Initialize text processor if not already done
|
177 |
-
if st.session_state.text_processor is None:
|
178 |
-
with st.spinner("Loading NLP models..."):
|
179 |
-
st.session_state.text_processor = TextProcessor()
|
180 |
-
|
181 |
# File upload section
|
182 |
uploaded_file = st.file_uploader(
|
183 |
"Upload Excel file containing papers",
|
@@ -185,6 +193,10 @@ def main():
|
|
185 |
help="File must contain: Abstract, Article Title, Authors, Source Title, Publication Year, DOI"
|
186 |
)
|
187 |
|
|
|
|
|
|
|
|
|
188 |
if uploaded_file is not None:
|
189 |
# Process Excel file
|
190 |
if st.session_state.processed_data is None:
|
@@ -192,146 +204,144 @@ def main():
|
|
192 |
df = process_excel(uploaded_file)
|
193 |
if df is not None:
|
194 |
st.session_state.processed_data = df.dropna(subset=["Abstract"])
|
195 |
-
|
196 |
-
if st.session_state.processed_data is not None:
|
197 |
-
df = st.session_state.processed_data
|
198 |
-
st.write(f"📊 Loaded {len(df)} papers")
|
199 |
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
if st.session_state.summaries is None:
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
progress_bar = st.progress(0)
|
214 |
-
|
215 |
-
# Create a table for live updates
|
216 |
-
summary_table = st.empty()
|
217 |
-
summaries = []
|
218 |
-
table_data = []
|
219 |
-
|
220 |
-
for i, (_, row) in enumerate(df.iterrows()):
|
221 |
-
progress_text.text(f"Processing paper {i+1} of {len(df)}")
|
222 |
-
progress_bar.progress((i + 1) / len(df))
|
223 |
|
224 |
-
|
225 |
-
summaries
|
|
|
|
|
226 |
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
)
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
# Clear memory after individual summaries
|
244 |
-
del model
|
245 |
-
del tokenizer
|
246 |
-
torch.cuda.empty_cache()
|
247 |
-
gc.collect()
|
248 |
|
249 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
250 |
if question.strip():
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
273 |
|
274 |
-
|
275 |
-
|
|
|
|
|
|
|
|
|
|
|
276 |
|
277 |
st.subheader("Most Relevant Papers")
|
278 |
-
relevant_papers =
|
279 |
['Article Title', 'Authors', 'Publication Year', 'DOI']
|
280 |
-
]
|
281 |
-
relevant_papers['Relevance Score'] =
|
282 |
relevant_papers['Publication Year'] = relevant_papers['Publication Year'].astype(int)
|
283 |
-
|
284 |
-
st.dataframe(
|
285 |
-
relevant_papers,
|
286 |
-
column_config={
|
287 |
-
'Publication Year': st.column_config.NumberColumn('Year', format="%d"),
|
288 |
-
'Relevance Score': st.column_config.NumberColumn('Relevance', format="%.3f")
|
289 |
-
},
|
290 |
-
hide_index=True
|
291 |
-
)
|
292 |
-
|
293 |
-
# Clear memory after question processing
|
294 |
-
del model
|
295 |
-
del tokenizer
|
296 |
-
torch.cuda.empty_cache()
|
297 |
-
gc.collect()
|
298 |
-
|
299 |
-
except Exception as e:
|
300 |
-
st.error(f"Error in analysis: {str(e)}")
|
301 |
-
|
302 |
-
# Display sorted summaries if they exist
|
303 |
-
if st.session_state.summaries is not None:
|
304 |
-
st.header("📝 Individual Paper Summaries")
|
305 |
-
col1, col2 = st.columns([2, 1])
|
306 |
-
with col1:
|
307 |
-
sort_by = st.selectbox(
|
308 |
-
"Sort By",
|
309 |
-
["Article Title", "Publication Year"],
|
310 |
-
key="sort_summaries"
|
311 |
-
)
|
312 |
-
with col2:
|
313 |
-
ascending = st.checkbox("Ascending order", True, key="sort_order")
|
314 |
-
|
315 |
-
# Create display dataframe
|
316 |
-
display_df = df.copy()
|
317 |
-
display_df['PAPER'] = display_df.apply(
|
318 |
-
lambda x: f"{x['Article Title']}\n{x['Authors']}\nDOI: {x['DOI']}",
|
319 |
-
axis=1
|
320 |
-
)
|
321 |
-
display_df['SUMMARY'] = st.session_state.summaries
|
322 |
-
|
323 |
-
# Sort the dataframe
|
324 |
-
sorted_df = display_df.sort_values(by=sort_by, ascending=ascending)
|
325 |
-
|
326 |
-
# Display the table
|
327 |
-
st.dataframe(
|
328 |
-
sorted_df[['PAPER', 'SUMMARY']],
|
329 |
-
column_config={
|
330 |
-
"PAPER": st.column_config.TextColumn("PAPER", width=300),
|
331 |
-
"SUMMARY": st.column_config.TextColumn("SUMMARY", width="medium")
|
332 |
-
},
|
333 |
-
hide_index=True
|
334 |
-
)
|
335 |
|
336 |
if __name__ == "__main__":
|
337 |
main()
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
import torch
|
4 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLm
|
5 |
from peft import PeftModel
|
6 |
from text_processing import TextProcessor
|
7 |
import gc
|
|
|
8 |
from pathlib import Path
|
9 |
|
10 |
# Configure page
|
|
|
21 |
st.session_state.summaries = None
|
22 |
if 'text_processor' not in st.session_state:
|
23 |
st.session_state.text_processor = None
|
24 |
+
if 'processing_started' not in st.session_state:
|
25 |
+
st.session_state.processing_started = False
|
26 |
+
if 'focused_summary_generated' not in st.session_state:
|
27 |
+
st.session_state.focused_summary_generated = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
def load_model(model_type):
|
30 |
+
"""Load appropriate model based on type with proper memory management"""
|
|
|
|
|
31 |
try:
|
32 |
+
# Clear any existing cached data
|
33 |
+
torch.cuda.empty_cache()
|
34 |
+
gc.collect()
|
35 |
+
|
36 |
if model_type == "summarize":
|
37 |
base_model = AutoModelForSeq2SeqLM.from_pretrained(
|
38 |
"facebook/bart-large-cnn",
|
39 |
cache_dir="./models",
|
40 |
+
low_cpu_mem_usage=True,
|
41 |
torch_dtype=torch.float32
|
42 |
+
)
|
|
|
43 |
model = PeftModel.from_pretrained(
|
44 |
base_model,
|
45 |
"pendar02/results",
|
46 |
+
device_map="auto",
|
47 |
+
torch_dtype=torch.float32
|
48 |
+
)
|
|
|
|
|
49 |
tokenizer = AutoTokenizer.from_pretrained(
|
50 |
"facebook/bart-large-cnn",
|
51 |
cache_dir="./models"
|
|
|
54 |
base_model = AutoModelForSeq2SeqLM.from_pretrained(
|
55 |
"GanjinZero/biobart-base",
|
56 |
cache_dir="./models",
|
57 |
+
low_cpu_mem_usage=True,
|
58 |
torch_dtype=torch.float32
|
59 |
+
)
|
|
|
60 |
model = PeftModel.from_pretrained(
|
61 |
base_model,
|
62 |
"pendar02/biobart-finetune",
|
63 |
+
device_map="auto",
|
64 |
+
torch_dtype=torch.float32
|
65 |
+
)
|
|
|
|
|
66 |
tokenizer = AutoTokenizer.from_pretrained(
|
67 |
"GanjinZero/biobart-base",
|
68 |
cache_dir="./models"
|
69 |
)
|
70 |
|
71 |
+
model.eval()
|
72 |
return model, tokenizer
|
73 |
except Exception as e:
|
74 |
st.error(f"Error loading model: {str(e)}")
|
75 |
raise
|
76 |
|
77 |
+
def cleanup_model(model, tokenizer):
|
78 |
+
"""Properly cleanup model resources"""
|
79 |
+
try:
|
80 |
+
del model
|
81 |
+
del tokenizer
|
82 |
+
torch.cuda.empty_cache()
|
83 |
+
gc.collect()
|
84 |
+
except Exception:
|
85 |
+
pass
|
86 |
+
|
87 |
@st.cache_data
|
88 |
def process_excel(uploaded_file):
|
89 |
"""Process uploaded Excel file"""
|
90 |
try:
|
91 |
df = pd.read_excel(uploaded_file)
|
92 |
required_columns = ['Abstract', 'Article Title', 'Authors',
|
93 |
+
'Source Title', 'Publication Year', 'DOI']
|
94 |
|
95 |
# Check required columns
|
96 |
missing_columns = [col for col in required_columns if col not in df.columns]
|
|
|
124 |
if not isinstance(text, str) or not text.strip():
|
125 |
return "No abstract available to summarize."
|
126 |
|
127 |
+
# Check if abstract is too short
|
128 |
+
word_count = len(text.split())
|
129 |
+
if word_count < 50: # Threshold for "short" abstracts
|
130 |
+
return text # Return original text for very short abstracts
|
131 |
+
|
132 |
# Preprocess the text first
|
133 |
formatted_text = preprocess_text(text)
|
134 |
|
135 |
+
# Adjust generation parameters based on input length
|
136 |
+
max_length = min(150, word_count + 50) # Dynamic max length
|
137 |
+
min_length = min(50, word_count) # Dynamic min length
|
138 |
+
|
139 |
inputs = tokenizer(formatted_text, return_tensors="pt", max_length=1024, truncation=True)
|
140 |
|
141 |
with torch.no_grad():
|
|
|
143 |
**{
|
144 |
"input_ids": inputs["input_ids"],
|
145 |
"attention_mask": inputs["attention_mask"],
|
146 |
+
"max_length": max_length,
|
147 |
+
"min_length": min_length,
|
148 |
"num_beams": 4,
|
149 |
"length_penalty": 2.0,
|
150 |
+
"early_stopping": True,
|
151 |
+
"no_repeat_ngram_size": 3 # Prevent repetition of phrases
|
152 |
}
|
153 |
)
|
154 |
|
155 |
+
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
156 |
+
|
157 |
+
# Post-process summary
|
158 |
+
if summary.lower() == text.lower() or len(summary.split()) / word_count > 0.9:
|
159 |
+
return text # Return original if summary is too similar
|
160 |
+
|
161 |
+
return summary
|
162 |
|
163 |
def generate_focused_summary(question, abstracts, model, tokenizer):
|
164 |
"""Generate focused summary based on question"""
|
|
|
186 |
def main():
|
187 |
st.title("🔬 Biomedical Papers Analysis")
|
188 |
|
|
|
|
|
|
|
|
|
|
|
189 |
# File upload section
|
190 |
uploaded_file = st.file_uploader(
|
191 |
"Upload Excel file containing papers",
|
|
|
193 |
help="File must contain: Abstract, Article Title, Authors, Source Title, Publication Year, DOI"
|
194 |
)
|
195 |
|
196 |
+
# Question input - moved up but hidden initially
|
197 |
+
question_container = st.empty()
|
198 |
+
question = ""
|
199 |
+
|
200 |
if uploaded_file is not None:
|
201 |
# Process Excel file
|
202 |
if st.session_state.processed_data is None:
|
|
|
204 |
df = process_excel(uploaded_file)
|
205 |
if df is not None:
|
206 |
st.session_state.processed_data = df.dropna(subset=["Abstract"])
|
|
|
|
|
|
|
|
|
207 |
|
208 |
+
if st.session_state.processed_data is not None:
|
209 |
+
df = st.session_state.processed_data
|
210 |
+
st.write(f"📊 Loaded {len(df)} papers with abstracts")
|
211 |
+
|
212 |
+
# Get question before processing
|
213 |
+
with question_container:
|
214 |
+
question = st.text_input(
|
215 |
+
"Enter your research question (optional):",
|
216 |
+
help="If provided, a question-focused summary will be generated after individual summaries"
|
217 |
+
)
|
218 |
+
|
219 |
+
# Single button for both processes
|
220 |
+
if not st.session_state.get('processing_started', False):
|
221 |
+
if st.button("Start Analysis"):
|
222 |
+
st.session_state.processing_started = True
|
223 |
+
|
224 |
+
# Show processing status and results
|
225 |
+
if st.session_state.get('processing_started', False):
|
226 |
+
# Individual Summaries Section
|
227 |
+
st.header("📝 Individual Paper Summaries")
|
228 |
+
|
229 |
if st.session_state.summaries is None:
|
230 |
+
try:
|
231 |
+
with st.spinner("Generating summaries..."):
|
232 |
+
# Load summarization model
|
233 |
+
model, tokenizer = load_model("summarize")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
234 |
|
235 |
+
# Process abstracts with real-time updates
|
236 |
+
summaries = []
|
237 |
+
progress_bar = st.progress(0)
|
238 |
+
summary_display = st.empty()
|
239 |
|
240 |
+
for i, (_, row) in enumerate(df.iterrows()):
|
241 |
+
summary = generate_summary(row['Abstract'], model, tokenizer)
|
242 |
+
summaries.append(summary)
|
243 |
+
|
244 |
+
# Update progress and show current summary
|
245 |
+
progress = (i + 1) / len(df)
|
246 |
+
progress_bar.progress(progress)
|
247 |
+
summary_display.write(f"Processing paper {i+1}/{len(df)}:\n{row['Article Title']}")
|
248 |
+
|
249 |
+
st.session_state.summaries = summaries
|
250 |
+
|
251 |
+
# Cleanup first model
|
252 |
+
cleanup_model(model, tokenizer)
|
253 |
+
|
254 |
+
except Exception as e:
|
255 |
+
st.error(f"Error generating summaries: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
256 |
|
257 |
+
# Display summaries with improved sorting
|
258 |
+
if st.session_state.summaries is not None:
|
259 |
+
col1, col2 = st.columns(2)
|
260 |
+
with col1:
|
261 |
+
sort_options = ['Article Title', 'Authors', 'Publication Year', 'Source Title']
|
262 |
+
sort_column = st.selectbox("Sort by:", sort_options)
|
263 |
+
with col2:
|
264 |
+
ascending = st.checkbox("Ascending order", True)
|
265 |
+
|
266 |
+
# Create display dataframe with formatted year
|
267 |
+
display_df = df.copy()
|
268 |
+
display_df['Summary'] = st.session_state.summaries
|
269 |
+
display_df['Publication Year'] = display_df['Publication Year'].astype(int)
|
270 |
+
sorted_df = display_df.sort_values(by=sort_column, ascending=ascending)
|
271 |
+
|
272 |
+
# Apply custom formatting
|
273 |
+
st.markdown("""
|
274 |
+
<style>
|
275 |
+
.stDataFrame {
|
276 |
+
font-size: 16px;
|
277 |
+
}
|
278 |
+
.stDataFrame td {
|
279 |
+
white-space: normal !important;
|
280 |
+
padding: 8px !important;
|
281 |
+
}
|
282 |
+
</style>
|
283 |
+
""", unsafe_allow_html=True)
|
284 |
+
|
285 |
+
st.dataframe(
|
286 |
+
sorted_df[['Article Title', 'Authors', 'Source Title',
|
287 |
+
'Publication Year', 'DOI', 'Summary']],
|
288 |
+
hide_index=True
|
289 |
+
)
|
290 |
+
|
291 |
+
# Question-focused Summary Section (only if question provided)
|
292 |
if question.strip():
|
293 |
+
st.header("❓ Question-focused Summary")
|
294 |
+
|
295 |
+
if not st.session_state.get('focused_summary_generated', False):
|
296 |
+
try:
|
297 |
+
with st.spinner("Analyzing relevant papers..."):
|
298 |
+
# Initialize text processor if needed
|
299 |
+
if st.session_state.text_processor is None:
|
300 |
+
st.session_state.text_processor = TextProcessor()
|
301 |
+
|
302 |
+
# Find relevant abstracts
|
303 |
+
results = st.session_state.text_processor.find_most_relevant_abstracts(
|
304 |
+
question,
|
305 |
+
df['Abstract'].tolist(),
|
306 |
+
top_k=5
|
307 |
+
)
|
308 |
+
|
309 |
+
# Load question-focused model
|
310 |
+
model, tokenizer = load_model("question_focused")
|
311 |
+
|
312 |
+
# Generate focused summary
|
313 |
+
relevant_abstracts = df['Abstract'].iloc[results['top_indices']].tolist()
|
314 |
+
focused_summary = generate_focused_summary(
|
315 |
+
question,
|
316 |
+
relevant_abstracts,
|
317 |
+
model,
|
318 |
+
tokenizer
|
319 |
+
)
|
320 |
+
|
321 |
+
# Store results
|
322 |
+
st.session_state.focused_summary = focused_summary
|
323 |
+
st.session_state.relevant_papers = df.iloc[results['top_indices']]
|
324 |
+
st.session_state.relevance_scores = results['scores']
|
325 |
+
st.session_state.focused_summary_generated = True
|
326 |
+
|
327 |
+
# Cleanup second model
|
328 |
+
cleanup_model(model, tokenizer)
|
329 |
|
330 |
+
except Exception as e:
|
331 |
+
st.error(f"Error generating focused summary: {str(e)}")
|
332 |
+
|
333 |
+
# Display focused summary results
|
334 |
+
if st.session_state.get('focused_summary_generated', False):
|
335 |
+
st.subheader("Summary")
|
336 |
+
st.write(st.session_state.focused_summary)
|
337 |
|
338 |
st.subheader("Most Relevant Papers")
|
339 |
+
relevant_papers = st.session_state.relevant_papers[
|
340 |
['Article Title', 'Authors', 'Publication Year', 'DOI']
|
341 |
+
].copy()
|
342 |
+
relevant_papers['Relevance Score'] = st.session_state.relevance_scores
|
343 |
relevant_papers['Publication Year'] = relevant_papers['Publication Year'].astype(int)
|
344 |
+
st.dataframe(relevant_papers, hide_index=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
345 |
|
346 |
if __name__ == "__main__":
|
347 |
main()
|