Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -27,61 +27,17 @@ if 'processing_started' not in st.session_state:
|
|
27 |
if 'focused_summary_generated' not in st.session_state:
|
28 |
st.session_state.focused_summary_generated = False
|
29 |
|
30 |
-
def preprocess_text(text):
|
31 |
-
"""Preprocess text for summarization"""
|
32 |
-
if not isinstance(text, str) or not text.strip():
|
33 |
-
return text
|
34 |
-
|
35 |
-
# Clean up whitespace
|
36 |
-
text = re.sub(r'\s+', ' ', text)
|
37 |
-
text = text.strip()
|
38 |
-
|
39 |
-
# Fix common formatting issues
|
40 |
-
text = re.sub(r'(\d+)\s*%', r'\1%', text) # Fix percentage format
|
41 |
-
text = re.sub(r'\(\s*([Nn])\s*=\s*(\d+)\s*\)', r'(n=\2)', text) # Fix sample size format
|
42 |
-
text = re.sub(r'([Pp])\s*([<>])\s*(\d)', r'\1\2\3', text) # Fix p-value format
|
43 |
-
|
44 |
-
return text
|
45 |
-
|
46 |
-
def verify_facts(summary, original_text):
|
47 |
-
"""Verify key facts between summary and original text"""
|
48 |
-
# Extract numbers and percentages
|
49 |
-
def extract_numbers(text):
|
50 |
-
return set(re.findall(r'(\d+\.?\d*)%?', text))
|
51 |
-
|
52 |
-
# Extract relationships
|
53 |
-
def extract_relationships(text):
|
54 |
-
patterns = [
|
55 |
-
r'associated with', r'predicted', r'correlated',
|
56 |
-
r'increased', r'decreased', r'significant'
|
57 |
-
]
|
58 |
-
found = []
|
59 |
-
for pattern in patterns:
|
60 |
-
if re.search(pattern, text.lower()):
|
61 |
-
found.append(pattern)
|
62 |
-
return set(found)
|
63 |
-
|
64 |
-
# Get facts from both texts
|
65 |
-
original_numbers = extract_numbers(original_text)
|
66 |
-
summary_numbers = extract_numbers(summary)
|
67 |
-
original_relations = extract_relationships(original_text)
|
68 |
-
summary_relations = extract_relationships(summary)
|
69 |
-
|
70 |
-
return {
|
71 |
-
'is_valid': summary_numbers.issubset(original_numbers) and
|
72 |
-
summary_relations.issubset(original_relations),
|
73 |
-
'missing_numbers': original_numbers - summary_numbers,
|
74 |
-
'missing_relations': original_relations - summary_relations
|
75 |
-
}
|
76 |
-
|
77 |
def load_model(model_type):
|
78 |
"""Load appropriate model based on type with proper memory management"""
|
79 |
try:
|
|
|
80 |
gc.collect()
|
81 |
torch.cuda.empty_cache()
|
82 |
-
|
|
|
83 |
|
84 |
if model_type == "summarize":
|
|
|
85 |
model = AutoModelForSeq2SeqLM.from_pretrained(
|
86 |
"pendar02/bart-large-pubmedd",
|
87 |
cache_dir="./models",
|
@@ -92,7 +48,7 @@ def load_model(model_type):
|
|
92 |
"pendar02/bart-large-pubmedd",
|
93 |
cache_dir="./models"
|
94 |
)
|
95 |
-
else:
|
96 |
base_model = AutoModelForSeq2SeqLM.from_pretrained(
|
97 |
"GanjinZero/biobart-base",
|
98 |
cache_dir="./models",
|
@@ -117,6 +73,7 @@ def load_model(model_type):
|
|
117 |
raise
|
118 |
|
119 |
def cleanup_model(model, tokenizer):
|
|
|
120 |
try:
|
121 |
del model
|
122 |
del tokenizer
|
@@ -125,12 +82,15 @@ def cleanup_model(model, tokenizer):
|
|
125 |
except Exception:
|
126 |
pass
|
127 |
|
|
|
128 |
def process_excel(uploaded_file):
|
|
|
129 |
try:
|
130 |
df = pd.read_excel(uploaded_file)
|
131 |
required_columns = ['Abstract', 'Article Title', 'Authors',
|
132 |
'Source Title', 'Publication Year', 'DOI', 'Times Cited, All Databases']
|
133 |
|
|
|
134 |
missing_columns = [col for col in required_columns if col not in df.columns]
|
135 |
if missing_columns:
|
136 |
st.error(f"Missing required columns: {', '.join(missing_columns)}")
|
@@ -141,111 +101,119 @@ def process_excel(uploaded_file):
|
|
141 |
st.error(f"Error processing file: {str(e)}")
|
142 |
return None
|
143 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
def improve_summary_generation(text, model, tokenizer):
|
145 |
"""Generate improved summary with better prompt and validation"""
|
146 |
if not isinstance(text, str) or not text.strip():
|
147 |
return "No abstract available to summarize."
|
148 |
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
)
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
|
|
|
|
|
|
|
|
165 |
with torch.no_grad():
|
166 |
summary_ids = model.generate(
|
167 |
**{
|
168 |
"input_ids": inputs["input_ids"],
|
169 |
"attention_mask": inputs["attention_mask"],
|
170 |
-
"max_length":
|
171 |
-
"min_length":
|
172 |
-
"num_beams":
|
173 |
"length_penalty": 2.0,
|
174 |
-
"no_repeat_ngram_size":
|
175 |
-
"temperature": 0.
|
176 |
-
"repetition_penalty": 2.
|
177 |
}
|
178 |
)
|
179 |
-
|
180 |
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
181 |
-
|
182 |
-
return "Error: Could not generate summary."
|
183 |
-
|
184 |
-
return post_process_summary(summary)
|
185 |
-
|
186 |
-
except Exception as e:
|
187 |
-
print(f"Error in summary generation: {str(e)}")
|
188 |
-
return "Error generating summary."
|
189 |
-
|
190 |
-
def post_process_summary(summary):
|
191 |
-
"""Enhanced post-processing focused on maintaining structure and removing artifacts"""
|
192 |
-
if not summary:
|
193 |
-
return summary
|
194 |
-
|
195 |
-
# Clean up section headers
|
196 |
-
header_mappings = {
|
197 |
-
r'(?i)background.*objectives?:?': 'Background and objectives:',
|
198 |
-
r'(?i)(materials?\s*and\s*)?methods?:?': 'Methods:',
|
199 |
-
r'(?i)(key\s*)?findings?:?|results?:?': 'Key findings:',
|
200 |
-
r'(?i)conclusions?:?': 'Conclusions:',
|
201 |
-
r'(?i)(study\s*)?aims?:?|goals?:?|purpose:?': '',
|
202 |
-
r'(?i)objectives?:?': '',
|
203 |
-
r'(?i)outcomes?:?': '',
|
204 |
-
r'(?i)discussion:?': ''
|
205 |
-
}
|
206 |
|
207 |
-
|
208 |
-
summary = re.sub(pattern, replacement, summary)
|
209 |
-
|
210 |
-
# Split into sections and clean
|
211 |
-
sections = re.split(r'(?i)(Background and objectives:|Methods:|Key findings:|Conclusions:)', summary)
|
212 |
-
sections = [s.strip() for s in sections if s.strip()]
|
213 |
-
|
214 |
-
# Reorganize sections
|
215 |
-
organized_sections = {
|
216 |
-
'Background and objectives': '',
|
217 |
-
'Methods': '',
|
218 |
-
'Key findings': '',
|
219 |
-
'Conclusions': ''
|
220 |
-
}
|
221 |
-
|
222 |
-
current_section = None
|
223 |
-
for item in sections:
|
224 |
-
if item in organized_sections:
|
225 |
-
current_section = item
|
226 |
-
elif current_section:
|
227 |
-
# Clean up content
|
228 |
-
content = re.sub(r'\s+', ' ', item) # Fix spacing
|
229 |
-
content = re.sub(r'\.+', '.', content) # Fix multiple periods
|
230 |
-
content = content.strip('.: ') # Remove trailing periods and spaces
|
231 |
-
organized_sections[current_section] = content
|
232 |
-
|
233 |
-
# Build final summary
|
234 |
-
final_sections = []
|
235 |
-
for section, content in organized_sections.items():
|
236 |
-
if content:
|
237 |
-
final_sections.append(f"{section} {content}.")
|
238 |
-
|
239 |
-
return '\n\n'.join(final_sections)
|
240 |
|
241 |
def validate_summary(summary, original_text):
|
242 |
"""Validate summary content against original text"""
|
243 |
-
# Perform fact verification
|
244 |
-
verification = verify_facts(summary, original_text)
|
245 |
-
|
246 |
-
if not verification.get('is_valid', False):
|
247 |
-
return False
|
248 |
-
|
249 |
# Check for age inconsistencies
|
250 |
age_mentions = re.findall(r'(\d+\.?\d*)\s*years?', summary.lower())
|
251 |
if len(age_mentions) > 1: # Multiple age mentions
|
@@ -267,40 +235,34 @@ def validate_summary(summary, original_text):
|
|
267 |
|
268 |
def generate_focused_summary(question, abstracts, model, tokenizer):
|
269 |
"""Generate focused summary based on question"""
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
)
|
292 |
-
|
293 |
-
return tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
294 |
-
|
295 |
-
except Exception as e:
|
296 |
-
print(f"Error in focused summary generation: {str(e)}")
|
297 |
-
return "Error generating focused summary."
|
298 |
|
299 |
def create_filter_controls(df, sort_column):
|
300 |
"""Create appropriate filter controls based on the selected column"""
|
301 |
filtered_df = df.copy()
|
302 |
|
303 |
if sort_column == 'Publication Year':
|
|
|
304 |
year_min = int(df['Publication Year'].min())
|
305 |
year_max = int(df['Publication Year'].max())
|
306 |
col1, col2 = st.columns(2)
|
@@ -320,6 +282,7 @@ def create_filter_controls(df, sort_column):
|
|
320 |
]
|
321 |
|
322 |
elif sort_column == 'Authors':
|
|
|
323 |
unique_authors = sorted(set(
|
324 |
author.strip()
|
325 |
for authors in df['Authors'].dropna()
|
@@ -337,6 +300,7 @@ def create_filter_controls(df, sort_column):
|
|
337 |
]
|
338 |
|
339 |
elif sort_column == 'Source Title':
|
|
|
340 |
unique_sources = sorted(df['Source Title'].unique())
|
341 |
selected_sources = st.multiselect(
|
342 |
'Select Sources',
|
@@ -345,7 +309,13 @@ def create_filter_controls(df, sort_column):
|
|
345 |
if selected_sources:
|
346 |
filtered_df = filtered_df[filtered_df['Source Title'].isin(selected_sources)]
|
347 |
|
|
|
|
|
|
|
|
|
|
|
348 |
elif sort_column == 'Times Cited':
|
|
|
349 |
cited_min = int(df['Times Cited'].min())
|
350 |
cited_max = int(df['Times Cited'].max())
|
351 |
col1, col2 = st.columns(2)
|
@@ -369,16 +339,19 @@ def create_filter_controls(df, sort_column):
|
|
369 |
def main():
|
370 |
st.title("🔬 Biomedical Papers Analysis")
|
371 |
|
|
|
372 |
uploaded_file = st.file_uploader(
|
373 |
"Upload Excel file containing papers",
|
374 |
type=['xlsx', 'xls'],
|
375 |
help="File must contain: Abstract, Article Title, Authors, Source Title, Publication Year, DOI"
|
376 |
)
|
377 |
|
|
|
378 |
question_container = st.empty()
|
379 |
question = ""
|
380 |
|
381 |
if uploaded_file is not None:
|
|
|
382 |
if st.session_state.processed_data is None:
|
383 |
with st.spinner("Processing file..."):
|
384 |
df = process_excel(uploaded_file)
|
@@ -389,16 +362,17 @@ def main():
|
|
389 |
df = st.session_state.processed_data
|
390 |
st.write(f"📊 Loaded {len(df)} papers with abstracts")
|
391 |
|
|
|
392 |
with question_container:
|
393 |
question = st.text_input(
|
394 |
"Enter your research question (optional):",
|
395 |
-
help="If provided, a focused summary will be generated after individual summaries"
|
396 |
)
|
397 |
|
398 |
# Single button for both processes
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
|
403 |
# Show processing status and results
|
404 |
if st.session_state.get('processing_started', False):
|
|
|
27 |
if 'focused_summary_generated' not in st.session_state:
|
28 |
st.session_state.focused_summary_generated = False
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
def load_model(model_type):
|
31 |
"""Load appropriate model based on type with proper memory management"""
|
32 |
try:
|
33 |
+
# Clear any existing cached data
|
34 |
gc.collect()
|
35 |
torch.cuda.empty_cache()
|
36 |
+
|
37 |
+
device = "cpu" # Force CPU usage
|
38 |
|
39 |
if model_type == "summarize":
|
40 |
+
# Load the new fine-tuned model directly
|
41 |
model = AutoModelForSeq2SeqLM.from_pretrained(
|
42 |
"pendar02/bart-large-pubmedd",
|
43 |
cache_dir="./models",
|
|
|
48 |
"pendar02/bart-large-pubmedd",
|
49 |
cache_dir="./models"
|
50 |
)
|
51 |
+
else: # question_focused
|
52 |
base_model = AutoModelForSeq2SeqLM.from_pretrained(
|
53 |
"GanjinZero/biobart-base",
|
54 |
cache_dir="./models",
|
|
|
73 |
raise
|
74 |
|
75 |
def cleanup_model(model, tokenizer):
|
76 |
+
"""Properly cleanup model resources"""
|
77 |
try:
|
78 |
del model
|
79 |
del tokenizer
|
|
|
82 |
except Exception:
|
83 |
pass
|
84 |
|
85 |
+
@st.cache_data
|
86 |
def process_excel(uploaded_file):
|
87 |
+
"""Process uploaded Excel file"""
|
88 |
try:
|
89 |
df = pd.read_excel(uploaded_file)
|
90 |
required_columns = ['Abstract', 'Article Title', 'Authors',
|
91 |
'Source Title', 'Publication Year', 'DOI', 'Times Cited, All Databases']
|
92 |
|
93 |
+
# Check required columns
|
94 |
missing_columns = [col for col in required_columns if col not in df.columns]
|
95 |
if missing_columns:
|
96 |
st.error(f"Missing required columns: {', '.join(missing_columns)}")
|
|
|
101 |
st.error(f"Error processing file: {str(e)}")
|
102 |
return None
|
103 |
|
104 |
+
def preprocess_text(text):
|
105 |
+
"""Preprocess text to add appropriate formatting before summarization"""
|
106 |
+
if not isinstance(text, str) or not text.strip():
|
107 |
+
return text
|
108 |
+
|
109 |
+
# Split text into sentences (basic implementation)
|
110 |
+
sentences = [s.strip() for s in text.replace('. ', '.\n').split('\n')]
|
111 |
+
|
112 |
+
# Remove empty sentences
|
113 |
+
sentences = [s for s in sentences if s]
|
114 |
+
|
115 |
+
# Join with proper line breaks
|
116 |
+
formatted_text = '\n'.join(sentences)
|
117 |
+
|
118 |
+
return formatted_text
|
119 |
+
|
120 |
+
def post_process_summary(summary):
|
121 |
+
"""Clean up and improve summary coherence"""
|
122 |
+
if not summary:
|
123 |
+
return summary
|
124 |
+
|
125 |
+
# Split into sentences
|
126 |
+
sentences = [s.strip() for s in summary.split('.')]
|
127 |
+
sentences = [s for s in sentences if s] # Remove empty sentences
|
128 |
+
|
129 |
+
# Fix common issues
|
130 |
+
processed_sentences = []
|
131 |
+
for i, sentence in enumerate(sentences):
|
132 |
+
# Remove redundant words/phrases
|
133 |
+
sentence = sentence.replace(" and and ", " and ")
|
134 |
+
sentence = sentence.replace("appointment and appointment", "appointment")
|
135 |
+
|
136 |
+
# Fix common grammatical issues
|
137 |
+
sentence = sentence.replace("Cancers distress", "Cancer distress")
|
138 |
+
sentence = sentence.replace(" ", " ") # Remove double spaces
|
139 |
+
|
140 |
+
# Capitalize first letter of each sentence
|
141 |
+
sentence = sentence.capitalize()
|
142 |
+
|
143 |
+
# Add to processed sentences if not empty
|
144 |
+
if sentence.strip():
|
145 |
+
processed_sentences.append(sentence)
|
146 |
+
|
147 |
+
# Join sentences with proper spacing and punctuation
|
148 |
+
cleaned_summary = '. '.join(processed_sentences)
|
149 |
+
if cleaned_summary and not cleaned_summary.endswith('.'):
|
150 |
+
cleaned_summary += '.'
|
151 |
+
|
152 |
+
return cleaned_summary
|
153 |
+
|
154 |
def improve_summary_generation(text, model, tokenizer):
|
155 |
"""Generate improved summary with better prompt and validation"""
|
156 |
if not isinstance(text, str) or not text.strip():
|
157 |
return "No abstract available to summarize."
|
158 |
|
159 |
+
# Add a more specific prompt
|
160 |
+
formatted_text = (
|
161 |
+
"Summarize this medical research paper following this structure exactly:\n"
|
162 |
+
"1. Background and objectives\n"
|
163 |
+
"2. Methods\n"
|
164 |
+
"3. Key findings with specific numbers/percentages\n"
|
165 |
+
"4. Main conclusions\n"
|
166 |
+
"Original text: " + preprocess_text(text)
|
167 |
+
)
|
168 |
+
|
169 |
+
# Adjust generation parameters
|
170 |
+
inputs = tokenizer(formatted_text, return_tensors="pt", max_length=1024, truncation=True)
|
171 |
+
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
172 |
+
|
173 |
+
with torch.no_grad():
|
174 |
+
summary_ids = model.generate(
|
175 |
+
**{
|
176 |
+
"input_ids": inputs["input_ids"],
|
177 |
+
"attention_mask": inputs["attention_mask"],
|
178 |
+
"max_length": 200,
|
179 |
+
"min_length": 50,
|
180 |
+
"num_beams": 5,
|
181 |
+
"length_penalty": 1.5,
|
182 |
+
"no_repeat_ngram_size": 3,
|
183 |
+
"temperature": 0.7,
|
184 |
+
"repetition_penalty": 1.5
|
185 |
+
}
|
186 |
)
|
187 |
+
|
188 |
+
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
189 |
+
|
190 |
+
# Post-process the summary
|
191 |
+
processed_summary = post_process_summary(summary)
|
192 |
+
|
193 |
+
# Validate the summary
|
194 |
+
if not validate_summary(processed_summary, text):
|
195 |
+
# If validation fails, try one more time with different parameters
|
196 |
with torch.no_grad():
|
197 |
summary_ids = model.generate(
|
198 |
**{
|
199 |
"input_ids": inputs["input_ids"],
|
200 |
"attention_mask": inputs["attention_mask"],
|
201 |
+
"max_length": 200,
|
202 |
+
"min_length": 50,
|
203 |
+
"num_beams": 4,
|
204 |
"length_penalty": 2.0,
|
205 |
+
"no_repeat_ngram_size": 4,
|
206 |
+
"temperature": 0.8,
|
207 |
+
"repetition_penalty": 2.0
|
208 |
}
|
209 |
)
|
|
|
210 |
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
211 |
+
processed_summary = post_process_summary(summary)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
|
213 |
+
return processed_summary
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
|
215 |
def validate_summary(summary, original_text):
|
216 |
"""Validate summary content against original text"""
|
|
|
|
|
|
|
|
|
|
|
|
|
217 |
# Check for age inconsistencies
|
218 |
age_mentions = re.findall(r'(\d+\.?\d*)\s*years?', summary.lower())
|
219 |
if len(age_mentions) > 1: # Multiple age mentions
|
|
|
235 |
|
236 |
def generate_focused_summary(question, abstracts, model, tokenizer):
|
237 |
"""Generate focused summary based on question"""
|
238 |
+
# Preprocess each abstract
|
239 |
+
formatted_abstracts = [preprocess_text(abstract) for abstract in abstracts]
|
240 |
+
combined_input = f"Question: {question} Abstracts: " + " [SEP] ".join(formatted_abstracts)
|
241 |
+
|
242 |
+
inputs = tokenizer(combined_input, return_tensors="pt", max_length=1024, truncation=True)
|
243 |
+
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
244 |
+
|
245 |
+
with torch.no_grad():
|
246 |
+
summary_ids = model.generate(
|
247 |
+
**{
|
248 |
+
"input_ids": inputs["input_ids"],
|
249 |
+
"attention_mask": inputs["attention_mask"],
|
250 |
+
"max_length": 200,
|
251 |
+
"min_length": 50,
|
252 |
+
"num_beams": 4,
|
253 |
+
"length_penalty": 2.0,
|
254 |
+
"early_stopping": True
|
255 |
+
}
|
256 |
+
)
|
257 |
+
|
258 |
+
return tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
259 |
|
260 |
def create_filter_controls(df, sort_column):
|
261 |
"""Create appropriate filter controls based on the selected column"""
|
262 |
filtered_df = df.copy()
|
263 |
|
264 |
if sort_column == 'Publication Year':
|
265 |
+
# Year range slider
|
266 |
year_min = int(df['Publication Year'].min())
|
267 |
year_max = int(df['Publication Year'].max())
|
268 |
col1, col2 = st.columns(2)
|
|
|
282 |
]
|
283 |
|
284 |
elif sort_column == 'Authors':
|
285 |
+
# Multi-select for authors
|
286 |
unique_authors = sorted(set(
|
287 |
author.strip()
|
288 |
for authors in df['Authors'].dropna()
|
|
|
300 |
]
|
301 |
|
302 |
elif sort_column == 'Source Title':
|
303 |
+
# Multi-select for source titles
|
304 |
unique_sources = sorted(df['Source Title'].unique())
|
305 |
selected_sources = st.multiselect(
|
306 |
'Select Sources',
|
|
|
309 |
if selected_sources:
|
310 |
filtered_df = filtered_df[filtered_df['Source Title'].isin(selected_sources)]
|
311 |
|
312 |
+
elif sort_column == 'Article Title':
|
313 |
+
# Only alphabetical sorting, no filtering
|
314 |
+
pass
|
315 |
+
|
316 |
+
|
317 |
elif sort_column == 'Times Cited':
|
318 |
+
# Cited count range slider
|
319 |
cited_min = int(df['Times Cited'].min())
|
320 |
cited_max = int(df['Times Cited'].max())
|
321 |
col1, col2 = st.columns(2)
|
|
|
339 |
def main():
|
340 |
st.title("🔬 Biomedical Papers Analysis")
|
341 |
|
342 |
+
# File upload section
|
343 |
uploaded_file = st.file_uploader(
|
344 |
"Upload Excel file containing papers",
|
345 |
type=['xlsx', 'xls'],
|
346 |
help="File must contain: Abstract, Article Title, Authors, Source Title, Publication Year, DOI"
|
347 |
)
|
348 |
|
349 |
+
# Question input - moved up but hidden initially
|
350 |
question_container = st.empty()
|
351 |
question = ""
|
352 |
|
353 |
if uploaded_file is not None:
|
354 |
+
# Process Excel file
|
355 |
if st.session_state.processed_data is None:
|
356 |
with st.spinner("Processing file..."):
|
357 |
df = process_excel(uploaded_file)
|
|
|
362 |
df = st.session_state.processed_data
|
363 |
st.write(f"📊 Loaded {len(df)} papers with abstracts")
|
364 |
|
365 |
+
# Get question before processing
|
366 |
with question_container:
|
367 |
question = st.text_input(
|
368 |
"Enter your research question (optional):",
|
369 |
+
help="If provided, a question-focused summary will be generated after individual summaries"
|
370 |
)
|
371 |
|
372 |
# Single button for both processes
|
373 |
+
if not st.session_state.get('processing_started', False):
|
374 |
+
if st.button("Start Analysis"):
|
375 |
+
st.session_state.processing_started = True
|
376 |
|
377 |
# Show processing status and results
|
378 |
if st.session_state.get('processing_started', False):
|