Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -117,173 +117,122 @@ def preprocess_text(text):
|
|
117 |
|
118 |
return formatted_text
|
119 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
def improve_summary_generation(text, model, tokenizer):
|
122 |
-
"""Generate improved summary with better prompt
|
123 |
if not isinstance(text, str) or not text.strip():
|
124 |
return "No abstract available to summarize."
|
125 |
|
126 |
-
#
|
127 |
formatted_text = (
|
128 |
-
"Summarize this medical research paper
|
129 |
-
"
|
130 |
-
"
|
131 |
-
"
|
132 |
-
"
|
133 |
-
"3. RESULTS: Report specific findings with exact numbers/percentages\n"
|
134 |
-
"4. CONCLUSION: State main implications\n\n"
|
135 |
"Original text: " + preprocess_text(text)
|
136 |
)
|
137 |
|
138 |
-
#
|
139 |
-
summary = generate_summary_attempt(formatted_text, model, tokenizer,
|
140 |
-
conservative_params=True)
|
141 |
-
|
142 |
-
# Validate the generated summary
|
143 |
-
if not validate_summary(summary, text):
|
144 |
-
# If validation fails, try again with different parameters
|
145 |
-
summary = generate_summary_attempt(formatted_text, model, tokenizer,
|
146 |
-
conservative_params=False)
|
147 |
-
|
148 |
-
return post_process_summary(summary)
|
149 |
-
|
150 |
-
def generate_summary_attempt(formatted_text, model, tokenizer, conservative_params=True):
|
151 |
-
"""Generate a summary with specified parameters"""
|
152 |
inputs = tokenizer(formatted_text, return_tensors="pt", max_length=1024, truncation=True)
|
153 |
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
154 |
|
155 |
-
params = {
|
156 |
-
"input_ids": inputs["input_ids"],
|
157 |
-
"attention_mask": inputs["attention_mask"],
|
158 |
-
"max_length": 250, # Increased for better coverage
|
159 |
-
"min_length": 100, # Increased to ensure comprehensive summary
|
160 |
-
"early_stopping": True,
|
161 |
-
"no_repeat_ngram_size": 3,
|
162 |
-
}
|
163 |
-
|
164 |
-
if conservative_params:
|
165 |
-
params.update({
|
166 |
-
"num_beams": 5,
|
167 |
-
"length_penalty": 1.5,
|
168 |
-
"temperature": 0.7,
|
169 |
-
"top_p": 0.9,
|
170 |
-
"repetition_penalty": 1.5
|
171 |
-
})
|
172 |
-
else:
|
173 |
-
params.update({
|
174 |
-
"num_beams": 4,
|
175 |
-
"length_penalty": 2.0,
|
176 |
-
"temperature": 0.8,
|
177 |
-
"top_p": 0.95,
|
178 |
-
"repetition_penalty": 2.0
|
179 |
-
})
|
180 |
-
|
181 |
with torch.no_grad():
|
182 |
-
summary_ids = model.generate(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
|
184 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
|
186 |
def validate_summary(summary, original_text):
|
187 |
-
"""
|
188 |
-
|
|
|
|
|
189 |
return False
|
190 |
-
|
191 |
-
# Extract numerical values from both texts
|
192 |
-
original_numbers = set(re.findall(r'(\d+(?:\.\d+)?)\s*%', original_text))
|
193 |
-
summary_numbers = set(re.findall(r'(\d+(?:\.\d+)?)\s*%', summary))
|
194 |
|
195 |
-
# Check
|
196 |
-
|
|
|
|
|
197 |
return False
|
198 |
|
199 |
-
# Check
|
200 |
-
|
201 |
-
|
202 |
-
if
|
203 |
return False
|
204 |
|
205 |
-
# Verify no hallucinated content
|
206 |
-
sentences = summary.split('.')
|
207 |
-
for sentence in sentences:
|
208 |
-
# Check if key claims in summary are supported by original
|
209 |
-
if sentence.strip() and not is_supported_by_original(sentence, original_text):
|
210 |
-
return False
|
211 |
-
|
212 |
-
return True
|
213 |
-
|
214 |
-
def extract_methods(text):
|
215 |
-
"""Extract methodology-related terms"""
|
216 |
-
method_keywords = ['study', 'survey', 'analysis', 'trial', 'experiment']
|
217 |
-
methods = []
|
218 |
-
for keyword in method_keywords:
|
219 |
-
pattern = fr'{keyword}\s+\w+'
|
220 |
-
matches = re.findall(pattern, text.lower())
|
221 |
-
methods.extend(matches)
|
222 |
-
return methods
|
223 |
-
|
224 |
-
def is_supported_by_original(claim, original):
|
225 |
-
"""Check if a claim from summary is supported by original text"""
|
226 |
-
# Remove common filler phrases
|
227 |
-
claim = re.sub(r'(this study|the study|results show|we found that)', '', claim.lower()).strip()
|
228 |
-
|
229 |
-
# Split into key phrases
|
230 |
-
key_phrases = [p.strip() for p in claim.split(' and ')]
|
231 |
-
|
232 |
-
# Check if each key phrase has supporting evidence
|
233 |
-
for phrase in key_phrases:
|
234 |
-
if phrase and not has_supporting_evidence(phrase, original.lower()):
|
235 |
-
return False
|
236 |
return True
|
237 |
|
238 |
-
def has_supporting_evidence(phrase, original):
|
239 |
-
"""Check if there's supporting evidence for a phrase"""
|
240 |
-
# Convert to word sets for flexible matching
|
241 |
-
phrase_words = set(phrase.split())
|
242 |
-
original_sentences = [set(s.split()) for s in original.split('.')]
|
243 |
-
|
244 |
-
# Check if any sentence contains most of the phrase words
|
245 |
-
return any(len(phrase_words.intersection(sent)) >= len(phrase_words) * 0.7
|
246 |
-
for sent in original_sentences)
|
247 |
-
|
248 |
-
def post_process_summary(summary):
|
249 |
-
"""Enhanced post-processing of generated summary"""
|
250 |
-
if not summary:
|
251 |
-
return summary
|
252 |
-
|
253 |
-
# Split into sections based on the structured format
|
254 |
-
sections = []
|
255 |
-
current_section = []
|
256 |
-
|
257 |
-
for line in summary.split('\n'):
|
258 |
-
line = line.strip()
|
259 |
-
if any(marker in line.upper() for marker in ['OBJECTIVE:', 'METHODS:', 'RESULTS:', 'CONCLUSION:']):
|
260 |
-
if current_section:
|
261 |
-
sections.append(' '.join(current_section))
|
262 |
-
current_section = [line]
|
263 |
-
elif line:
|
264 |
-
current_section.append(line)
|
265 |
-
|
266 |
-
if current_section:
|
267 |
-
sections.append(' '.join(current_section))
|
268 |
-
|
269 |
-
# Clean up each section
|
270 |
-
cleaned_sections = []
|
271 |
-
for section in sections:
|
272 |
-
# Fix common issues
|
273 |
-
section = re.sub(r'\s+', ' ', section) # Remove multiple spaces
|
274 |
-
section = re.sub(r'(\d+)\s*%', r'\1%', section) # Fix percentage formatting
|
275 |
-
section = re.sub(r'(\.|,)\s*(\d)', r'\1 \2', section) # Fix number spacing
|
276 |
-
cleaned_sections.append(section)
|
277 |
-
|
278 |
-
# Join sections with proper spacing
|
279 |
-
final_summary = '\n'.join(cleaned_sections)
|
280 |
-
|
281 |
-
# Ensure proper ending
|
282 |
-
if final_summary and not final_summary.endswith('.'):
|
283 |
-
final_summary += '.'
|
284 |
-
|
285 |
-
return final_summary
|
286 |
-
|
287 |
def generate_focused_summary(question, abstracts, model, tokenizer):
|
288 |
"""Generate focused summary based on question"""
|
289 |
# Preprocess each abstract
|
|
|
117 |
|
118 |
return formatted_text
|
119 |
|
120 |
+
def post_process_summary(summary):
|
121 |
+
"""Clean up and improve summary coherence"""
|
122 |
+
if not summary:
|
123 |
+
return summary
|
124 |
+
|
125 |
+
# Split into sentences
|
126 |
+
sentences = [s.strip() for s in summary.split('.')]
|
127 |
+
sentences = [s for s in sentences if s] # Remove empty sentences
|
128 |
+
|
129 |
+
# Fix common issues
|
130 |
+
processed_sentences = []
|
131 |
+
for i, sentence in enumerate(sentences):
|
132 |
+
# Remove redundant words/phrases
|
133 |
+
sentence = sentence.replace(" and and ", " and ")
|
134 |
+
sentence = sentence.replace("appointment and appointment", "appointment")
|
135 |
+
|
136 |
+
# Fix common grammatical issues
|
137 |
+
sentence = sentence.replace("Cancers distress", "Cancer distress")
|
138 |
+
sentence = sentence.replace(" ", " ") # Remove double spaces
|
139 |
+
|
140 |
+
# Capitalize first letter of each sentence
|
141 |
+
sentence = sentence.capitalize()
|
142 |
+
|
143 |
+
# Add to processed sentences if not empty
|
144 |
+
if sentence.strip():
|
145 |
+
processed_sentences.append(sentence)
|
146 |
+
|
147 |
+
# Join sentences with proper spacing and punctuation
|
148 |
+
cleaned_summary = '. '.join(processed_sentences)
|
149 |
+
if cleaned_summary and not cleaned_summary.endswith('.'):
|
150 |
+
cleaned_summary += '.'
|
151 |
+
|
152 |
+
return cleaned_summary
|
153 |
|
154 |
def improve_summary_generation(text, model, tokenizer):
|
155 |
+
"""Generate improved summary with better prompt and validation"""
|
156 |
if not isinstance(text, str) or not text.strip():
|
157 |
return "No abstract available to summarize."
|
158 |
|
159 |
+
# Add a more specific prompt
|
160 |
formatted_text = (
|
161 |
+
"Summarize this medical research paper following this structure exactly:\n"
|
162 |
+
"1. Background and objectives\n"
|
163 |
+
"2. Methods\n"
|
164 |
+
"3. Key findings with specific numbers/percentages\n"
|
165 |
+
"4. Main conclusions\n"
|
|
|
|
|
166 |
"Original text: " + preprocess_text(text)
|
167 |
)
|
168 |
|
169 |
+
# Adjust generation parameters
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
inputs = tokenizer(formatted_text, return_tensors="pt", max_length=1024, truncation=True)
|
171 |
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
172 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
with torch.no_grad():
|
174 |
+
summary_ids = model.generate(
|
175 |
+
**{
|
176 |
+
"input_ids": inputs["input_ids"],
|
177 |
+
"attention_mask": inputs["attention_mask"],
|
178 |
+
"max_length": 200,
|
179 |
+
"min_length": 50,
|
180 |
+
"num_beams": 5,
|
181 |
+
"length_penalty": 1.5,
|
182 |
+
"no_repeat_ngram_size": 3,
|
183 |
+
"temperature": 0.7,
|
184 |
+
"repetition_penalty": 1.5
|
185 |
+
}
|
186 |
+
)
|
187 |
|
188 |
+
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
189 |
+
|
190 |
+
# Post-process the summary
|
191 |
+
processed_summary = post_process_summary(summary)
|
192 |
+
|
193 |
+
# Validate the summary
|
194 |
+
if not validate_summary(processed_summary, text):
|
195 |
+
# If validation fails, try one more time with different parameters
|
196 |
+
with torch.no_grad():
|
197 |
+
summary_ids = model.generate(
|
198 |
+
**{
|
199 |
+
"input_ids": inputs["input_ids"],
|
200 |
+
"attention_mask": inputs["attention_mask"],
|
201 |
+
"max_length": 200,
|
202 |
+
"min_length": 50,
|
203 |
+
"num_beams": 4,
|
204 |
+
"length_penalty": 2.0,
|
205 |
+
"no_repeat_ngram_size": 4,
|
206 |
+
"temperature": 0.8,
|
207 |
+
"repetition_penalty": 2.0
|
208 |
+
}
|
209 |
+
)
|
210 |
+
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
211 |
+
processed_summary = post_process_summary(summary)
|
212 |
+
|
213 |
+
return processed_summary
|
214 |
|
215 |
def validate_summary(summary, original_text):
|
216 |
+
"""Validate summary content against original text"""
|
217 |
+
# Check for age inconsistencies
|
218 |
+
age_mentions = re.findall(r'(\d+\.?\d*)\s*years?', summary.lower())
|
219 |
+
if len(age_mentions) > 1: # Multiple age mentions
|
220 |
return False
|
|
|
|
|
|
|
|
|
221 |
|
222 |
+
# Check for repetitive sentences
|
223 |
+
sentences = summary.split('.')
|
224 |
+
unique_sentences = set(s.strip().lower() for s in sentences if s.strip())
|
225 |
+
if len(sentences) - len(unique_sentences) > 1: # More than one duplicate
|
226 |
return False
|
227 |
|
228 |
+
# Check summary isn't too long or too short compared to original
|
229 |
+
summary_words = len(summary.split())
|
230 |
+
original_words = len(original_text.split())
|
231 |
+
if summary_words < 20 or summary_words > original_words * 0.8:
|
232 |
return False
|
233 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
234 |
return True
|
235 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
236 |
def generate_focused_summary(question, abstracts, model, tokenizer):
|
237 |
"""Generate focused summary based on question"""
|
238 |
# Preprocess each abstract
|