Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -101,6 +101,69 @@ def process_excel(uploaded_file):
|
|
101 |
st.error(f"Error processing file: {str(e)}")
|
102 |
return None
|
103 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
def preprocess_text(text):
|
105 |
"""Preprocess text to add appropriate formatting before summarization"""
|
106 |
if not isinstance(text, str) or not text.strip():
|
@@ -109,8 +172,8 @@ def preprocess_text(text):
|
|
109 |
# Split text into sentences (basic implementation)
|
110 |
sentences = [s.strip() for s in text.replace('. ', '.\n').split('\n')]
|
111 |
|
112 |
-
# Remove empty sentences
|
113 |
-
sentences = [s for s in sentences if s]
|
114 |
|
115 |
# Join with proper line breaks
|
116 |
formatted_text = '\n'.join(sentences)
|
@@ -118,115 +181,179 @@ def preprocess_text(text):
|
|
118 |
return formatted_text
|
119 |
|
120 |
def post_process_summary(summary):
|
121 |
-
"""
|
122 |
if not summary:
|
123 |
return summary
|
124 |
-
|
125 |
-
# Split into
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
|
|
|
|
|
|
|
|
|
|
134 |
|
135 |
-
|
136 |
-
sentence
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
|
138 |
-
|
139 |
-
|
140 |
-
|
|
|
|
|
141 |
|
142 |
-
#
|
143 |
-
|
144 |
-
|
145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
|
147 |
def improve_summary_generation(text, model, tokenizer):
|
148 |
-
"""Generate improved summary with better prompt and validation
|
149 |
if not isinstance(text, str) or not text.strip():
|
150 |
return "No abstract available to summarize."
|
151 |
|
152 |
-
# Add a
|
153 |
formatted_text = (
|
154 |
-
"
|
155 |
-
"1. Background and
|
156 |
-
"2. Methods\n"
|
157 |
-
"3. Key
|
158 |
-
"4. Conclusions\n"
|
159 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
)
|
161 |
|
162 |
-
#
|
163 |
inputs = tokenizer(formatted_text, return_tensors="pt", max_length=1024, truncation=True)
|
164 |
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
165 |
|
166 |
-
|
167 |
-
try:
|
168 |
with torch.no_grad():
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
|
|
|
|
|
|
179 |
)
|
180 |
-
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
181 |
-
except Exception as e:
|
182 |
-
return f"Error in generation: {str(e)}"
|
183 |
|
184 |
-
#
|
185 |
-
|
186 |
-
|
|
|
|
|
|
|
187 |
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
input_ids=inputs["input_ids"],
|
194 |
-
attention_mask=inputs["attention_mask"],
|
195 |
-
max_length=250,
|
196 |
-
min_length=50,
|
197 |
-
num_beams=4,
|
198 |
-
length_penalty=2.0,
|
199 |
-
no_repeat_ngram_size=4,
|
200 |
-
temperature=0.8,
|
201 |
-
repetition_penalty=1.5,
|
202 |
-
)
|
203 |
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
204 |
processed_summary = post_process_summary(summary)
|
205 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
|
207 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
|
209 |
def validate_summary(summary, original_text):
|
210 |
-
"""Validate summary content against original text
|
211 |
-
#
|
212 |
-
|
213 |
-
|
214 |
-
if
|
215 |
-
return False # Too long
|
216 |
-
|
217 |
-
# Ensure structure is maintained (e.g., headings are present)
|
218 |
-
required_sections = ["background and objectives", "methods", "key findings", "conclusions"]
|
219 |
-
if not all(section.lower() in summary.lower() for section in required_sections):
|
220 |
return False
|
221 |
-
|
222 |
-
#
|
|
|
|
|
|
|
|
|
|
|
223 |
sentences = summary.split('.')
|
224 |
-
|
|
|
225 |
return False
|
226 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
return True
|
228 |
|
229 |
-
|
230 |
def generate_focused_summary(question, abstracts, model, tokenizer):
|
231 |
"""Generate focused summary based on question"""
|
232 |
# Preprocess each abstract
|
|
|
101 |
st.error(f"Error processing file: {str(e)}")
|
102 |
return None
|
103 |
|
104 |
+
def verify_facts(summary, original_text):
|
105 |
+
"""Verify that key facts in the summary match the original text"""
|
106 |
+
# Extract numbers and percentages
|
107 |
+
def extract_numbers(text):
|
108 |
+
return set(re.findall(r'(\d+\.?\d*)%?', text))
|
109 |
+
|
110 |
+
original_numbers = extract_numbers(original_text)
|
111 |
+
summary_numbers = extract_numbers(summary)
|
112 |
+
|
113 |
+
# Check if all numbers from original are in summary
|
114 |
+
missing_numbers = original_numbers - summary_numbers
|
115 |
+
|
116 |
+
# Extract key phrases indicating relationships
|
117 |
+
relationship_patterns = [
|
118 |
+
r'associated with',
|
119 |
+
r'predicted',
|
120 |
+
r'correlated with',
|
121 |
+
r'relationship between',
|
122 |
+
r'linked to'
|
123 |
+
]
|
124 |
+
|
125 |
+
def extract_relationships(text):
|
126 |
+
relationships = []
|
127 |
+
for pattern in relationship_patterns:
|
128 |
+
matches = re.finditer(pattern, text.lower())
|
129 |
+
for match in matches:
|
130 |
+
# Get surrounding context
|
131 |
+
start = max(0, match.start() - 50)
|
132 |
+
end = min(len(text), match.end() + 50)
|
133 |
+
relationships.append(text[start:end].strip())
|
134 |
+
return set(relationships)
|
135 |
+
|
136 |
+
original_relationships = extract_relationships(original_text)
|
137 |
+
summary_relationships = extract_relationships(summary)
|
138 |
+
|
139 |
+
# Check for contradictions
|
140 |
+
def find_contradictions(summary, original):
|
141 |
+
contradictions = []
|
142 |
+
# Common contradiction patterns
|
143 |
+
neg_patterns = [
|
144 |
+
(r'no association', r'associated with'),
|
145 |
+
(r'did not predict', r'predicted'),
|
146 |
+
(r'was not significant', r'was significant'),
|
147 |
+
(r'decreased', r'increased'),
|
148 |
+
(r'lower', r'higher')
|
149 |
+
]
|
150 |
+
|
151 |
+
for pos, neg in neg_patterns:
|
152 |
+
if (re.search(pos, summary.lower()) and re.search(neg, original.lower())) or \
|
153 |
+
(re.search(neg, summary.lower()) and re.search(pos, original.lower())):
|
154 |
+
contradictions.append(f"Contradiction found: {pos} vs {neg}")
|
155 |
+
|
156 |
+
return contradictions
|
157 |
+
|
158 |
+
contradictions = find_contradictions(summary, original_text)
|
159 |
+
|
160 |
+
return {
|
161 |
+
'missing_numbers': missing_numbers,
|
162 |
+
'missing_relationships': original_relationships - summary_relationships,
|
163 |
+
'contradictions': contradictions,
|
164 |
+
'is_valid': len(missing_numbers) == 0 and len(contradictions) == 0
|
165 |
+
}
|
166 |
+
|
167 |
def preprocess_text(text):
|
168 |
"""Preprocess text to add appropriate formatting before summarization"""
|
169 |
if not isinstance(text, str) or not text.strip():
|
|
|
172 |
# Split text into sentences (basic implementation)
|
173 |
sentences = [s.strip() for s in text.replace('. ', '.\n').split('\n')]
|
174 |
|
175 |
+
# Remove empty sentences and extra whitespace
|
176 |
+
sentences = [re.sub(r'\s+', ' ', s).strip() for s in sentences if s.strip()]
|
177 |
|
178 |
# Join with proper line breaks
|
179 |
formatted_text = '\n'.join(sentences)
|
|
|
181 |
return formatted_text
|
182 |
|
183 |
def post_process_summary(summary):
|
184 |
+
"""Enhanced post-processing for better structure and completeness"""
|
185 |
if not summary:
|
186 |
return summary
|
187 |
+
|
188 |
+
# Split into sections
|
189 |
+
sections = summary.split('\n')
|
190 |
+
processed_sections = []
|
191 |
+
|
192 |
+
for section in sections:
|
193 |
+
if not section.strip():
|
194 |
+
continue
|
195 |
+
|
196 |
+
# Remove redundant section headers
|
197 |
+
section = re.sub(r'^(Background and objectives|Methods|Results|Conclusions):\s*', '', section)
|
198 |
+
|
199 |
+
# Split into sentences
|
200 |
+
sentences = [s.strip() for s in section.split('.')]
|
201 |
+
sentences = [s for s in sentences if s]
|
202 |
|
203 |
+
processed_sentences = []
|
204 |
+
for i, sentence in enumerate(sentences):
|
205 |
+
# Fix common issues
|
206 |
+
sentence = re.sub(r'\s+', ' ', sentence) # Fix spacing
|
207 |
+
sentence = re.sub(r'(\d+)\s*%', r'\1%', sentence) # Fix percentage formatting
|
208 |
+
sentence = re.sub(r'\(\s*([Nn])\s*=\s*(\d+)\s*\)', r'(n=\2)', sentence) # Fix sample size formatting
|
209 |
+
|
210 |
+
# Fix common phrase issues
|
211 |
+
sentence = sentence.replace(" and and ", " and ")
|
212 |
+
sentence = sentence.replace("appointment and appointment", "appointment")
|
213 |
+
sentence = sentence.replace("Cancers distress", "Cancer distress")
|
214 |
+
|
215 |
+
# Remove redundant phrases
|
216 |
+
sentence = re.sub(r'(?i)the aim of (the|this) study was to', '', sentence)
|
217 |
+
sentence = re.sub(r'(?i)this study aimed to', '', sentence)
|
218 |
+
|
219 |
+
# Capitalize first letter
|
220 |
+
sentence = sentence.capitalize()
|
221 |
+
|
222 |
+
if sentence.strip():
|
223 |
+
processed_sentences.append(sentence)
|
224 |
|
225 |
+
if processed_sentences:
|
226 |
+
section = '. '.join(processed_sentences)
|
227 |
+
if not section.endswith('.'):
|
228 |
+
section += '.'
|
229 |
+
processed_sections.append(section)
|
230 |
|
231 |
+
# Ensure key sections are present
|
232 |
+
required_sections = ['Background and objectives', 'Methods', 'Key findings', 'Conclusions']
|
233 |
+
final_sections = []
|
234 |
+
|
235 |
+
for i, section in enumerate(processed_sections):
|
236 |
+
if i < len(required_sections):
|
237 |
+
final_sections.append(f"{required_sections[i]}: {section}")
|
238 |
+
else:
|
239 |
+
final_sections.append(section)
|
240 |
+
|
241 |
+
return '\n\n'.join(final_sections)
|
242 |
|
243 |
def improve_summary_generation(text, model, tokenizer):
|
244 |
+
"""Generate improved summary with better prompt and validation"""
|
245 |
if not isinstance(text, str) or not text.strip():
|
246 |
return "No abstract available to summarize."
|
247 |
|
248 |
+
# Add a more specific prompt with strict guidelines
|
249 |
formatted_text = (
|
250 |
+
"Generate a precise summary of this medical research paper following these strict guidelines:\n"
|
251 |
+
"1. Background and objectives: State ONLY the actual study purpose and population - no assumptions\n"
|
252 |
+
"2. Methods: Include ONLY methods explicitly mentioned in the text\n"
|
253 |
+
"3. Key findings: Report ALL numerical results and statistical relationships\n"
|
254 |
+
"4. Conclusions: State ONLY conclusions directly supported by the reported results\n\n"
|
255 |
+
"Requirements:\n"
|
256 |
+
"- Include ALL percentages and numbers from the original text\n"
|
257 |
+
"- Do not repeat section headers\n"
|
258 |
+
"- Do not make claims beyond what's explicitly stated\n"
|
259 |
+
"- Maintain the original meaning without contradiction\n"
|
260 |
+
"- Do not introduce new information\n\n"
|
261 |
+
"Original text: " + preprocess_text(text)
|
262 |
)
|
263 |
|
264 |
+
# Tokenize input
|
265 |
inputs = tokenizer(formatted_text, return_tensors="pt", max_length=1024, truncation=True)
|
266 |
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
267 |
|
268 |
+
def generate_attempt(temperature, num_beams, length_penalty):
|
|
|
269 |
with torch.no_grad():
|
270 |
+
return model.generate(
|
271 |
+
**{
|
272 |
+
"input_ids": inputs["input_ids"],
|
273 |
+
"attention_mask": inputs["attention_mask"],
|
274 |
+
"max_length": 300, # Increased to ensure all facts are included
|
275 |
+
"min_length": 100, # Increased to encourage more complete summaries
|
276 |
+
"num_beams": num_beams,
|
277 |
+
"length_penalty": length_penalty,
|
278 |
+
"no_repeat_ngram_size": 3,
|
279 |
+
"temperature": temperature,
|
280 |
+
"repetition_penalty": 2.0, # Increased to reduce repetition
|
281 |
+
"do_sample": True # Enable sampling for more diverse outputs
|
282 |
+
}
|
283 |
)
|
|
|
|
|
|
|
284 |
|
285 |
+
# Try different parameter combinations until we get a valid summary
|
286 |
+
parameter_combinations = [
|
287 |
+
{"temperature": 0.7, "num_beams": 5, "length_penalty": 1.5},
|
288 |
+
{"temperature": 0.5, "num_beams": 8, "length_penalty": 2.0},
|
289 |
+
{"temperature": 0.3, "num_beams": 10, "length_penalty": 2.5}
|
290 |
+
]
|
291 |
|
292 |
+
best_summary = None
|
293 |
+
best_verification = None
|
294 |
+
|
295 |
+
for params in parameter_combinations:
|
296 |
+
summary_ids = generate_attempt(**params)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
297 |
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
298 |
processed_summary = post_process_summary(summary)
|
299 |
+
|
300 |
+
# Verify facts in the summary
|
301 |
+
verification = verify_facts(processed_summary, text)
|
302 |
+
|
303 |
+
if verification['is_valid']:
|
304 |
+
return processed_summary
|
305 |
+
|
306 |
+
# Keep track of best attempt
|
307 |
+
if best_verification is None or \
|
308 |
+
len(verification['missing_numbers']) < len(best_verification['missing_numbers']):
|
309 |
+
best_summary = processed_summary
|
310 |
+
best_verification = verification
|
311 |
|
312 |
+
# If no perfect summary was generated, use the best attempt
|
313 |
+
# Add missing information if necessary
|
314 |
+
if best_verification and best_verification['missing_numbers']:
|
315 |
+
# Attempt to add missing numerical information
|
316 |
+
additional_info = []
|
317 |
+
original_sentences = text.split('.')
|
318 |
+
for num in best_verification['missing_numbers']:
|
319 |
+
# Find sentences containing the missing number
|
320 |
+
for sentence in original_sentences:
|
321 |
+
if str(num) in sentence:
|
322 |
+
additional_info.append(sentence.strip())
|
323 |
+
break
|
324 |
+
|
325 |
+
if additional_info:
|
326 |
+
best_summary += "\n\nAdditional key findings: " + ". ".join(additional_info) + "."
|
327 |
+
|
328 |
+
return best_summary
|
329 |
|
330 |
def validate_summary(summary, original_text):
|
331 |
+
"""Validate summary content against original text"""
|
332 |
+
# Perform fact verification
|
333 |
+
verification = verify_facts(summary, original_text)
|
334 |
+
|
335 |
+
if not verification['is_valid']:
|
|
|
|
|
|
|
|
|
|
|
336 |
return False
|
337 |
+
|
338 |
+
# Check for age inconsistencies
|
339 |
+
age_mentions = re.findall(r'(\d+\.?\d*)\s*years?', summary.lower())
|
340 |
+
if len(age_mentions) > 1: # Multiple age mentions
|
341 |
+
return False
|
342 |
+
|
343 |
+
# Check for repetitive sentences
|
344 |
sentences = summary.split('.')
|
345 |
+
unique_sentences = set(s.strip().lower() for s in sentences if s.strip())
|
346 |
+
if len(sentences) - len(unique_sentences) > 1: # More than one duplicate
|
347 |
return False
|
348 |
+
|
349 |
+
# Check summary isn't too long or too short compared to original
|
350 |
+
summary_words = len(summary.split())
|
351 |
+
original_words = len(original_text.split())
|
352 |
+
if summary_words < 20 or summary_words > original_words * 0.8:
|
353 |
+
return False
|
354 |
+
|
355 |
return True
|
356 |
|
|
|
357 |
def generate_focused_summary(question, abstracts, model, tokenizer):
|
358 |
"""Generate focused summary based on question"""
|
359 |
# Preprocess each abstract
|