biomedical / app.py
pendar02's picture
Create app.py
60b1427 verified
raw
history blame
10.2 kB
import streamlit as st
import pandas as pd
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from peft import PeftModel
from text_processing import TextProcessor
import gc
import time
from pathlib import Path
# Configure page
st.set_page_config(
page_title="Biomedical Papers Analysis",
page_icon="πŸ”¬",
layout="wide"
)
# Initialize session state
if 'processed_data' not in st.session_state:
st.session_state.processed_data = None
if 'summaries' not in st.session_state:
st.session_state.summaries = None
if 'text_processor' not in st.session_state:
st.session_state.text_processor = None
def load_model(model_type):
"""Load appropriate model based on type"""
if model_type == "summarize":
base_model = AutoModelForSeq2SeqLM.from_pretrained("facebook/bart-large-cnn")
model = PeftModel.from_pretrained(base_model, "pendar02/results")
tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")
else: # question_focused
base_model = AutoModelForSeq2SeqLM.from_pretrained("GanjinZero/biobart-base")
model = PeftModel.from_pretrained(base_model, "pendar02/biobart-finetune")
tokenizer = AutoTokenizer.from_pretrained("GanjinZero/biobart-base")
return model, tokenizer
@st.cache_data
def process_excel(uploaded_file):
"""Process uploaded Excel file"""
try:
df = pd.read_excel(uploaded_file)
required_columns = ['Abstract', 'Article Title', 'Authors',
'Source Title', 'Publication Year', 'DOI']
# Check required columns
missing_columns = [col for col in required_columns if col not in df.columns]
if missing_columns:
st.error(f"Missing required columns: {', '.join(missing_columns)}")
return None
return df[required_columns]
except Exception as e:
st.error(f"Error processing file: {str(e)}")
return None
def generate_summary(text, model, tokenizer):
"""Generate summary for single abstract"""
inputs = tokenizer(text, return_tensors="pt", max_length=1024, truncation=True)
with torch.no_grad():
summary_ids = model.generate(
**{
"input_ids": inputs["input_ids"],
"attention_mask": inputs["attention_mask"],
"max_length": 150,
"min_length": 50,
"num_beams": 4,
"length_penalty": 2.0,
"early_stopping": True
}
)
return tokenizer.decode(summary_ids[0], skip_special_tokens=True)
def generate_focused_summary(question, abstracts, model, tokenizer):
"""Generate focused summary based on question"""
combined_input = f"Question: {question} Abstracts: " + " [SEP] ".join(abstracts)
inputs = tokenizer(combined_input, return_tensors="pt", max_length=1024, truncation=True)
with torch.no_grad():
summary_ids = model.generate(
**{
"input_ids": inputs["input_ids"],
"attention_mask": inputs["attention_mask"],
"max_length": 200,
"min_length": 50,
"num_beams": 4,
"length_penalty": 2.0,
"early_stopping": True
}
)
return tokenizer.decode(summary_ids[0], skip_special_tokens=True)
def main():
st.title("πŸ”¬ Biomedical Papers Analysis")
# Sidebar
st.sidebar.header("About")
st.sidebar.info(
"This app analyzes biomedical research papers. Upload an Excel file "
"containing paper details and abstracts to:"
"\n- Generate individual summaries"
"\n- Get question-focused insights"
)
# Initialize text processor if not already done
if st.session_state.text_processor is None:
with st.spinner("Loading NLP models..."):
st.session_state.text_processor = TextProcessor()
# File upload section
uploaded_file = st.file_uploader(
"Upload Excel file containing papers",
type=['xlsx', 'xls'],
help="File must contain: Abstract, Article Title, Authors, Source Title, Publication Year, DOI"
)
if uploaded_file is not None:
# Process Excel file
if st.session_state.processed_data is None:
with st.spinner("Processing file..."):
df = process_excel(uploaded_file)
if df is not None:
st.session_state.processed_data = df
if st.session_state.processed_data is not None:
df = st.session_state.processed_data
st.write(f"πŸ“Š Loaded {len(df)} papers")
# Individual Summaries Section
st.header("πŸ“ Individual Paper Summaries")
if st.session_state.summaries is None and st.button("Generate Individual Summaries"):
try:
with st.spinner("Generating summaries..."):
# Load summarization model
model, tokenizer = load_model("summarize")
# Process abstracts
progress_bar = st.progress(0)
summaries = []
for i, abstract in enumerate(df['Abstract']):
summary = generate_summary(abstract, model, tokenizer)
summaries.append(summary)
progress_bar.progress((i + 1) / len(df))
st.session_state.summaries = summaries
# Clear GPU memory
del model
del tokenizer
torch.cuda.empty_cache()
gc.collect()
except Exception as e:
st.error(f"Error generating summaries: {str(e)}")
if st.session_state.summaries is not None:
# Display summaries with sorting options
col1, col2 = st.columns(2)
with col1:
sort_column = st.selectbox("Sort by:", df.columns)
with col2:
ascending = st.checkbox("Ascending order", True)
# Create display dataframe
display_df = df.copy()
display_df['Summary'] = st.session_state.summaries
sorted_df = display_df.sort_values(by=sort_column, ascending=ascending)
# Show interactive table
st.dataframe(
sorted_df,
column_config={
"Abstract": st.column_config.TextColumn(
"Abstract",
width="medium",
help="Original abstract text"
),
"Summary": st.column_config.TextColumn(
"Summary",
width="medium",
help="Generated summary"
)
},
hide_index=True
)
# Question-focused Summary Section
st.header("❓ Question-focused Summary")
question = st.text_input("Enter your research question:")
if question and st.button("Generate Focused Summary"):
try:
with st.spinner("Analyzing relevant papers..."):
# Find relevant abstracts
results = st.session_state.text_processor.find_most_relevant_abstracts(
question,
df['Abstract'].tolist(),
top_k=5
)
# Show spell-check suggestion if needed
if results['processed_question']['original'] != results['processed_question']['corrected']:
st.info(f"Did you mean: {results['processed_question']['corrected']}?")
# Load question-focused model
model, tokenizer = load_model("question_focused")
# Get relevant abstracts and generate summary
relevant_abstracts = df['Abstract'].iloc[results['top_indices']].tolist()
focused_summary = generate_focused_summary(
results['processed_question']['corrected'],
relevant_abstracts,
model,
tokenizer
)
# Display results
st.subheader("Summary")
st.write(focused_summary)
# Show relevant papers
st.subheader("Most Relevant Papers")
relevant_papers = df.iloc[results['top_indices']][
['Article Title', 'Authors', 'Publication Year', 'DOI']
]
relevant_papers['Relevance Score'] = results['scores']
st.dataframe(relevant_papers, hide_index=True)
# Show identified medical terms
st.subheader("Identified Medical Terms")
st.write(", ".join(results['processed_question']['medical_entities']))
# Clear GPU memory
del model
del tokenizer
torch.cuda.empty_cache()
gc.collect()
except Exception as e:
st.error(f"Error generating focused summary: {str(e)}")
if __name__ == "__main__":
main()