File size: 10,224 Bytes
60b1427
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import streamlit as st
import pandas as pd
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from peft import PeftModel
from text_processing import TextProcessor
import gc
import time
from pathlib import Path

# Configure page
st.set_page_config(
    page_title="Biomedical Papers Analysis",
    page_icon="πŸ”¬",
    layout="wide"
)

# Initialize session state
if 'processed_data' not in st.session_state:
    st.session_state.processed_data = None
if 'summaries' not in st.session_state:
    st.session_state.summaries = None
if 'text_processor' not in st.session_state:
    st.session_state.text_processor = None

def load_model(model_type):
    """Load appropriate model based on type"""
    if model_type == "summarize":
        base_model = AutoModelForSeq2SeqLM.from_pretrained("facebook/bart-large-cnn")
        model = PeftModel.from_pretrained(base_model, "pendar02/results")
        tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")
    else:  # question_focused
        base_model = AutoModelForSeq2SeqLM.from_pretrained("GanjinZero/biobart-base")
        model = PeftModel.from_pretrained(base_model, "pendar02/biobart-finetune")
        tokenizer = AutoTokenizer.from_pretrained("GanjinZero/biobart-base")
    
    return model, tokenizer

@st.cache_data
def process_excel(uploaded_file):
    """Process uploaded Excel file"""
    try:
        df = pd.read_excel(uploaded_file)
        required_columns = ['Abstract', 'Article Title', 'Authors', 
                          'Source Title', 'Publication Year', 'DOI']
        
        # Check required columns
        missing_columns = [col for col in required_columns if col not in df.columns]
        if missing_columns:
            st.error(f"Missing required columns: {', '.join(missing_columns)}")
            return None
            
        return df[required_columns]
    except Exception as e:
        st.error(f"Error processing file: {str(e)}")
        return None

def generate_summary(text, model, tokenizer):
    """Generate summary for single abstract"""
    inputs = tokenizer(text, return_tensors="pt", max_length=1024, truncation=True)
    
    with torch.no_grad():
        summary_ids = model.generate(
            **{
                "input_ids": inputs["input_ids"],
                "attention_mask": inputs["attention_mask"],
                "max_length": 150,
                "min_length": 50,
                "num_beams": 4,
                "length_penalty": 2.0,
                "early_stopping": True
            }
        )
    
    return tokenizer.decode(summary_ids[0], skip_special_tokens=True)

def generate_focused_summary(question, abstracts, model, tokenizer):
    """Generate focused summary based on question"""
    combined_input = f"Question: {question} Abstracts: " + " [SEP] ".join(abstracts)
    
    inputs = tokenizer(combined_input, return_tensors="pt", max_length=1024, truncation=True)
    
    with torch.no_grad():
        summary_ids = model.generate(
            **{
                "input_ids": inputs["input_ids"],
                "attention_mask": inputs["attention_mask"],
                "max_length": 200,
                "min_length": 50,
                "num_beams": 4,
                "length_penalty": 2.0,
                "early_stopping": True
            }
        )
    
    return tokenizer.decode(summary_ids[0], skip_special_tokens=True)

def main():
    st.title("πŸ”¬ Biomedical Papers Analysis")
    
    # Sidebar
    st.sidebar.header("About")
    st.sidebar.info(
        "This app analyzes biomedical research papers. Upload an Excel file "
        "containing paper details and abstracts to:"
        "\n- Generate individual summaries"
        "\n- Get question-focused insights"
    )
    
    # Initialize text processor if not already done
    if st.session_state.text_processor is None:
        with st.spinner("Loading NLP models..."):
            st.session_state.text_processor = TextProcessor()
    
    # File upload section
    uploaded_file = st.file_uploader(
        "Upload Excel file containing papers", 
        type=['xlsx', 'xls'],
        help="File must contain: Abstract, Article Title, Authors, Source Title, Publication Year, DOI"
    )
    
    if uploaded_file is not None:
        # Process Excel file
        if st.session_state.processed_data is None:
            with st.spinner("Processing file..."):
                df = process_excel(uploaded_file)
                if df is not None:
                    st.session_state.processed_data = df
        
        if st.session_state.processed_data is not None:
            df = st.session_state.processed_data
            st.write(f"πŸ“Š Loaded {len(df)} papers")
            
            # Individual Summaries Section
            st.header("πŸ“ Individual Paper Summaries")
            
            if st.session_state.summaries is None and st.button("Generate Individual Summaries"):
                try:
                    with st.spinner("Generating summaries..."):
                        # Load summarization model
                        model, tokenizer = load_model("summarize")
                        
                        # Process abstracts
                        progress_bar = st.progress(0)
                        summaries = []
                        
                        for i, abstract in enumerate(df['Abstract']):
                            summary = generate_summary(abstract, model, tokenizer)
                            summaries.append(summary)
                            progress_bar.progress((i + 1) / len(df))
                        
                        st.session_state.summaries = summaries
                        
                        # Clear GPU memory
                        del model
                        del tokenizer
                        torch.cuda.empty_cache()
                        gc.collect()
                
                except Exception as e:
                    st.error(f"Error generating summaries: {str(e)}")
            
            if st.session_state.summaries is not None:
                # Display summaries with sorting options
                col1, col2 = st.columns(2)
                with col1:
                    sort_column = st.selectbox("Sort by:", df.columns)
                with col2:
                    ascending = st.checkbox("Ascending order", True)
                
                # Create display dataframe
                display_df = df.copy()
                display_df['Summary'] = st.session_state.summaries
                sorted_df = display_df.sort_values(by=sort_column, ascending=ascending)
                
                # Show interactive table
                st.dataframe(
                    sorted_df,
                    column_config={
                        "Abstract": st.column_config.TextColumn(
                            "Abstract",
                            width="medium",
                            help="Original abstract text"
                        ),
                        "Summary": st.column_config.TextColumn(
                            "Summary",
                            width="medium",
                            help="Generated summary"
                        )
                    },
                    hide_index=True
                )
            
            # Question-focused Summary Section
            st.header("❓ Question-focused Summary")
            question = st.text_input("Enter your research question:")
            
            if question and st.button("Generate Focused Summary"):
                try:
                    with st.spinner("Analyzing relevant papers..."):
                        # Find relevant abstracts
                        results = st.session_state.text_processor.find_most_relevant_abstracts(
                            question,
                            df['Abstract'].tolist(),
                            top_k=5
                        )
                        
                        # Show spell-check suggestion if needed
                        if results['processed_question']['original'] != results['processed_question']['corrected']:
                            st.info(f"Did you mean: {results['processed_question']['corrected']}?")
                        
                        # Load question-focused model
                        model, tokenizer = load_model("question_focused")
                        
                        # Get relevant abstracts and generate summary
                        relevant_abstracts = df['Abstract'].iloc[results['top_indices']].tolist()
                        focused_summary = generate_focused_summary(
                            results['processed_question']['corrected'],
                            relevant_abstracts,
                            model,
                            tokenizer
                        )
                        
                        # Display results
                        st.subheader("Summary")
                        st.write(focused_summary)
                        
                        # Show relevant papers
                        st.subheader("Most Relevant Papers")
                        relevant_papers = df.iloc[results['top_indices']][
                            ['Article Title', 'Authors', 'Publication Year', 'DOI']
                        ]
                        relevant_papers['Relevance Score'] = results['scores']
                        st.dataframe(relevant_papers, hide_index=True)
                        
                        # Show identified medical terms
                        st.subheader("Identified Medical Terms")
                        st.write(", ".join(results['processed_question']['medical_entities']))
                        
                        # Clear GPU memory
                        del model
                        del tokenizer
                        torch.cuda.empty_cache()
                        gc.collect()
                
                except Exception as e:
                    st.error(f"Error generating focused summary: {str(e)}")

if __name__ == "__main__":
    main()