Spaces:
Sleeping
Sleeping
File size: 10,224 Bytes
60b1427 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
import streamlit as st
import pandas as pd
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from peft import PeftModel
from text_processing import TextProcessor
import gc
import time
from pathlib import Path
# Configure page
st.set_page_config(
page_title="Biomedical Papers Analysis",
page_icon="π¬",
layout="wide"
)
# Initialize session state
if 'processed_data' not in st.session_state:
st.session_state.processed_data = None
if 'summaries' not in st.session_state:
st.session_state.summaries = None
if 'text_processor' not in st.session_state:
st.session_state.text_processor = None
def load_model(model_type):
"""Load appropriate model based on type"""
if model_type == "summarize":
base_model = AutoModelForSeq2SeqLM.from_pretrained("facebook/bart-large-cnn")
model = PeftModel.from_pretrained(base_model, "pendar02/results")
tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")
else: # question_focused
base_model = AutoModelForSeq2SeqLM.from_pretrained("GanjinZero/biobart-base")
model = PeftModel.from_pretrained(base_model, "pendar02/biobart-finetune")
tokenizer = AutoTokenizer.from_pretrained("GanjinZero/biobart-base")
return model, tokenizer
@st.cache_data
def process_excel(uploaded_file):
"""Process uploaded Excel file"""
try:
df = pd.read_excel(uploaded_file)
required_columns = ['Abstract', 'Article Title', 'Authors',
'Source Title', 'Publication Year', 'DOI']
# Check required columns
missing_columns = [col for col in required_columns if col not in df.columns]
if missing_columns:
st.error(f"Missing required columns: {', '.join(missing_columns)}")
return None
return df[required_columns]
except Exception as e:
st.error(f"Error processing file: {str(e)}")
return None
def generate_summary(text, model, tokenizer):
"""Generate summary for single abstract"""
inputs = tokenizer(text, return_tensors="pt", max_length=1024, truncation=True)
with torch.no_grad():
summary_ids = model.generate(
**{
"input_ids": inputs["input_ids"],
"attention_mask": inputs["attention_mask"],
"max_length": 150,
"min_length": 50,
"num_beams": 4,
"length_penalty": 2.0,
"early_stopping": True
}
)
return tokenizer.decode(summary_ids[0], skip_special_tokens=True)
def generate_focused_summary(question, abstracts, model, tokenizer):
"""Generate focused summary based on question"""
combined_input = f"Question: {question} Abstracts: " + " [SEP] ".join(abstracts)
inputs = tokenizer(combined_input, return_tensors="pt", max_length=1024, truncation=True)
with torch.no_grad():
summary_ids = model.generate(
**{
"input_ids": inputs["input_ids"],
"attention_mask": inputs["attention_mask"],
"max_length": 200,
"min_length": 50,
"num_beams": 4,
"length_penalty": 2.0,
"early_stopping": True
}
)
return tokenizer.decode(summary_ids[0], skip_special_tokens=True)
def main():
st.title("π¬ Biomedical Papers Analysis")
# Sidebar
st.sidebar.header("About")
st.sidebar.info(
"This app analyzes biomedical research papers. Upload an Excel file "
"containing paper details and abstracts to:"
"\n- Generate individual summaries"
"\n- Get question-focused insights"
)
# Initialize text processor if not already done
if st.session_state.text_processor is None:
with st.spinner("Loading NLP models..."):
st.session_state.text_processor = TextProcessor()
# File upload section
uploaded_file = st.file_uploader(
"Upload Excel file containing papers",
type=['xlsx', 'xls'],
help="File must contain: Abstract, Article Title, Authors, Source Title, Publication Year, DOI"
)
if uploaded_file is not None:
# Process Excel file
if st.session_state.processed_data is None:
with st.spinner("Processing file..."):
df = process_excel(uploaded_file)
if df is not None:
st.session_state.processed_data = df
if st.session_state.processed_data is not None:
df = st.session_state.processed_data
st.write(f"π Loaded {len(df)} papers")
# Individual Summaries Section
st.header("π Individual Paper Summaries")
if st.session_state.summaries is None and st.button("Generate Individual Summaries"):
try:
with st.spinner("Generating summaries..."):
# Load summarization model
model, tokenizer = load_model("summarize")
# Process abstracts
progress_bar = st.progress(0)
summaries = []
for i, abstract in enumerate(df['Abstract']):
summary = generate_summary(abstract, model, tokenizer)
summaries.append(summary)
progress_bar.progress((i + 1) / len(df))
st.session_state.summaries = summaries
# Clear GPU memory
del model
del tokenizer
torch.cuda.empty_cache()
gc.collect()
except Exception as e:
st.error(f"Error generating summaries: {str(e)}")
if st.session_state.summaries is not None:
# Display summaries with sorting options
col1, col2 = st.columns(2)
with col1:
sort_column = st.selectbox("Sort by:", df.columns)
with col2:
ascending = st.checkbox("Ascending order", True)
# Create display dataframe
display_df = df.copy()
display_df['Summary'] = st.session_state.summaries
sorted_df = display_df.sort_values(by=sort_column, ascending=ascending)
# Show interactive table
st.dataframe(
sorted_df,
column_config={
"Abstract": st.column_config.TextColumn(
"Abstract",
width="medium",
help="Original abstract text"
),
"Summary": st.column_config.TextColumn(
"Summary",
width="medium",
help="Generated summary"
)
},
hide_index=True
)
# Question-focused Summary Section
st.header("β Question-focused Summary")
question = st.text_input("Enter your research question:")
if question and st.button("Generate Focused Summary"):
try:
with st.spinner("Analyzing relevant papers..."):
# Find relevant abstracts
results = st.session_state.text_processor.find_most_relevant_abstracts(
question,
df['Abstract'].tolist(),
top_k=5
)
# Show spell-check suggestion if needed
if results['processed_question']['original'] != results['processed_question']['corrected']:
st.info(f"Did you mean: {results['processed_question']['corrected']}?")
# Load question-focused model
model, tokenizer = load_model("question_focused")
# Get relevant abstracts and generate summary
relevant_abstracts = df['Abstract'].iloc[results['top_indices']].tolist()
focused_summary = generate_focused_summary(
results['processed_question']['corrected'],
relevant_abstracts,
model,
tokenizer
)
# Display results
st.subheader("Summary")
st.write(focused_summary)
# Show relevant papers
st.subheader("Most Relevant Papers")
relevant_papers = df.iloc[results['top_indices']][
['Article Title', 'Authors', 'Publication Year', 'DOI']
]
relevant_papers['Relevance Score'] = results['scores']
st.dataframe(relevant_papers, hide_index=True)
# Show identified medical terms
st.subheader("Identified Medical Terms")
st.write(", ".join(results['processed_question']['medical_entities']))
# Clear GPU memory
del model
del tokenizer
torch.cuda.empty_cache()
gc.collect()
except Exception as e:
st.error(f"Error generating focused summary: {str(e)}")
if __name__ == "__main__":
main() |