import gradio as gr import numpy as np import torch from transformers import pipeline, VitsModel, AutoTokenizer device = "cuda:0" if torch.cuda.is_available() else "cpu" # load speech translation checkpoint asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device) #load translation checkpoint translator = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-en-pt") #load tts model to portuguese and tokenizer tts_model_name = "facebook/mms-tts-por" tts_model = VitsModel.from_pretrained(tts_model_name) tts_tokenizer = AutoTokenizer.from_pretrained(tts_model_name) def translate(audio): transcribed_outputs = asr_pipe(audio, generate_kwargs={"task": "translate"}) transcribed_text = transcribed_outputs["text"] outputs = translator(transcribed_text) return outputs[0]["translation_text"] def synthesise(text): inputs = tts_tokenizer(text=text, return_tensors="pt") input_ids = inputs["input_ids"].to(device) with torch.no_grad(): speech = tts_model(input_ids).waveform speech = speech.cpu().squeeze() # Remove dimensões extras, resultando em tensor 1D return speech def speech_to_speech_translation(audio): translated_text = translate(audio) synthesised_speech = synthesise(translated_text) synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16) return 16000, synthesised_speech title = "Cascaded STST - English to Portuguese" description = """ Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Portuguese. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Meta's [MMS-TTS-POR](https://huggingface.co/facebook/mms-tts-por) model for text-to-speech: ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation") """ demo = gr.Blocks() mic_translate = gr.Interface( fn=speech_to_speech_translation, inputs=gr.Audio(sources="microphone", type="filepath"), outputs=gr.Audio(label="Generated Speech", type="numpy"), title=title, description=description, ) file_translate = gr.Interface( fn=speech_to_speech_translation, inputs=gr.Audio(sources="upload", type="filepath"), outputs=gr.Audio(label="Generated Speech", type="numpy"), examples=[["./example.wav"]], title=title, description=description, ) with demo: gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"]) demo.launch()