Update app.py
Browse files
app.py
CHANGED
@@ -1,35 +1,40 @@
|
|
1 |
-
|
2 |
import numpy as np
|
3 |
import torch
|
4 |
-
|
5 |
|
6 |
-
from
|
7 |
|
|
|
8 |
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
10 |
|
11 |
# load speech translation checkpoint
|
12 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
13 |
|
14 |
-
#
|
15 |
-
|
16 |
-
|
17 |
-
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
|
18 |
-
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
19 |
|
20 |
-
|
21 |
-
|
|
|
|
|
22 |
|
23 |
|
24 |
def translate(audio):
|
25 |
-
|
26 |
-
|
|
|
|
|
27 |
|
28 |
|
29 |
def synthesise(text):
|
30 |
-
inputs =
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
33 |
|
34 |
|
35 |
def speech_to_speech_translation(audio):
|
@@ -39,10 +44,10 @@ def speech_to_speech_translation(audio):
|
|
39 |
return 16000, synthesised_speech
|
40 |
|
41 |
|
42 |
-
title = "Cascaded STST"
|
43 |
description = """
|
44 |
-
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in
|
45 |
-
[
|
46 |
|
47 |

|
48 |
"""
|
|
|
1 |
+
mport gradio as gr
|
2 |
import numpy as np
|
3 |
import torch
|
4 |
+
import scipy.io.wavfile
|
5 |
|
6 |
+
from datasets import load_dataset
|
7 |
|
8 |
+
from transformers import pipeline, VitsModel, AutoTokenizer
|
9 |
|
10 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
11 |
|
12 |
# load speech translation checkpoint
|
13 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
14 |
|
15 |
+
#load translation checkpoint
|
16 |
+
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-en-pt")
|
|
|
|
|
|
|
17 |
|
18 |
+
#load tts model to portuguese and tokenizer
|
19 |
+
tts_model_name = "facebook/mms-tts-por"
|
20 |
+
tts_model = VitsModel.from_pretrained(tts_model_name)
|
21 |
+
tts_tokenizer = AutoTokenizer.from_pretrained(tts_model_name)
|
22 |
|
23 |
|
24 |
def translate(audio):
|
25 |
+
transcribed_outputs = asr_pipe(audio, generate_kwargs={"task": "translate"})
|
26 |
+
transcribed_text = transcribed_outputs["text"]
|
27 |
+
outputs = translator(transcribed_text)
|
28 |
+
return outputs[0]["translation_text"]
|
29 |
|
30 |
|
31 |
def synthesise(text):
|
32 |
+
inputs = tts_tokenizer(text=text, return_tensors="pt")
|
33 |
+
input_ids = inputs["input_ids"].to(device)
|
34 |
+
with torch.no_grad():
|
35 |
+
speech = tts_model(input_ids).waveform
|
36 |
+
speech = speech.cpu().squeeze() # Remove dimensões extras, resultando em tensor 1D
|
37 |
+
return speech
|
38 |
|
39 |
|
40 |
def speech_to_speech_translation(audio):
|
|
|
44 |
return 16000, synthesised_speech
|
45 |
|
46 |
|
47 |
+
title = "Cascaded STST - English to Portuguese"
|
48 |
description = """
|
49 |
+
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Portuguese. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Meta's
|
50 |
+
[MMS-TTS-POR](https://huggingface.co/facebook/mms-tts-por) model for text-to-speech:
|
51 |
|
52 |

|
53 |
"""
|