pedrottic's picture
Update app.py
ac0ac86 verified
raw
history blame
2.64 kB
import gradio as gr
import numpy as np
import torch
from transformers import pipeline, VitsModel, AutoTokenizer
device = "cuda:0" if torch.cuda.is_available() else "cpu"
# load speech translation checkpoint
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
#load translation checkpoint
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-en-pt")
#load tts model to portuguese and tokenizer
tts_model_name = "facebook/mms-tts-por"
tts_model = VitsModel.from_pretrained(tts_model_name)
tts_tokenizer = AutoTokenizer.from_pretrained(tts_model_name)
def translate(audio):
transcribed_outputs = asr_pipe(audio, generate_kwargs={"task": "translate"})
transcribed_text = transcribed_outputs["text"]
outputs = translator(transcribed_text)
return outputs[0]["translation_text"]
def synthesise(text):
inputs = tts_tokenizer(text=text, return_tensors="pt")
input_ids = inputs["input_ids"].to(device)
with torch.no_grad():
speech = tts_model(input_ids).waveform
speech = speech.cpu().squeeze() # Remove dimensões extras, resultando em tensor 1D
return speech
def speech_to_speech_translation(audio):
translated_text = translate(audio)
synthesised_speech = synthesise(translated_text)
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
return 16000, synthesised_speech
title = "Cascaded STST - English to Portuguese"
description = """
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Portuguese. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Meta's
[MMS-TTS-POR](https://huggingface.co/facebook/mms-tts-por) model for text-to-speech:
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
"""
demo = gr.Blocks()
mic_translate = gr.Interface(
fn=speech_to_speech_translation,
inputs=gr.Audio(sources="microphone", type="filepath"),
outputs=gr.Audio(label="Generated Speech", type="numpy"),
title=title,
description=description,
)
file_translate = gr.Interface(
fn=speech_to_speech_translation,
inputs=gr.Audio(sources="upload", type="filepath"),
outputs=gr.Audio(label="Generated Speech", type="numpy"),
examples=[["./example.wav"]],
title=title,
description=description,
)
with demo:
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
demo.launch()