AgenticRagNCERT / utils /gradio_interface.py
Ashvanth.S
Minor changes in file
8d04b45
import gradio as gr
from fastapi import FastAPI
from fastapi.responses import JSONResponse
def create_gradio_interface(app: FastAPI, conversational_rag_chain, agent):
def qa_function(message, history, system):
if system == "RAG":
response = conversational_rag_chain.invoke(
{"input": message},
config={"configurable": {"session_id": "rag_session"}}
)
return response["answer"]
elif system == "Agent":
response = agent.invoke(
{"input": message},
config={"configurable": {"session_id": "agent_session"}}
)
return response['output']
gr_app = gr.Blocks()
with gr_app:
gr.Markdown("# Q&A System")
gr.Markdown("Ask questions based on the NCERT Sound chapter using RAG or use the Agent for broader queries involving recent news or facts.")
chatbot = gr.Chatbot()
msg = gr.Textbox()
clear = gr.Button("Clear")
system_choice = gr.Radio(["RAG", "Agent"], label="Choose System", value="RAG")
def user(user_message, history, system):
return "", history + [[user_message, None]]
def bot(history, system):
user_message = history[-1][0]
bot_message = qa_function(user_message, history, system)
history[-1][1] = bot_message
return history
msg.submit(user, [msg, chatbot, system_choice], [msg, chatbot], queue=False).then(
bot, [chatbot, system_choice], chatbot
)
clear.click(lambda: None, None, chatbot, queue=False)
return gr_app