Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -126,209 +126,31 @@
|
|
| 126 |
# # return [{"error": f"Error fetching research papers: {str(e)}"}]
|
| 127 |
|
| 128 |
|
| 129 |
-
|
| 130 |
-
# import feedparser
|
| 131 |
-
# import urllib.parse
|
| 132 |
-
# import yaml
|
| 133 |
-
# from tools.final_answer import FinalAnswerTool
|
| 134 |
-
# import numpy as np
|
| 135 |
-
# from sklearn.feature_extraction.text import TfidfVectorizer
|
| 136 |
-
# from sklearn.metrics.pairwise import cosine_similarity
|
| 137 |
-
# import gradio as gr
|
| 138 |
-
# from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
|
| 139 |
-
# import nltk
|
| 140 |
-
|
| 141 |
-
# import datetime
|
| 142 |
-
# import requests
|
| 143 |
-
# import pytz
|
| 144 |
-
# from tools.final_answer import FinalAnswerTool
|
| 145 |
-
|
| 146 |
-
# from Gradio_UI import GradioUI
|
| 147 |
-
|
| 148 |
-
# nltk.download("stopwords")
|
| 149 |
-
# from nltk.corpus import stopwords
|
| 150 |
-
|
| 151 |
-
# @tool # ✅ Register the function properly as a SmolAgents tool
|
| 152 |
-
# def fetch_latest_arxiv_papers(keywords: list, num_results: int = 5) -> list:
|
| 153 |
-
# """Fetches and ranks arXiv papers using TF-IDF and Cosine Similarity.
|
| 154 |
-
|
| 155 |
-
# Args:
|
| 156 |
-
# keywords: List of keywords for search.
|
| 157 |
-
# num_results: Number of results to return.
|
| 158 |
-
|
| 159 |
-
# Returns:
|
| 160 |
-
# List of the most relevant papers based on TF-IDF ranking.
|
| 161 |
-
# """
|
| 162 |
-
# try:
|
| 163 |
-
# print(f"DEBUG: Searching arXiv papers with keywords: {keywords}")
|
| 164 |
-
|
| 165 |
-
# # Use a general keyword search
|
| 166 |
-
# query = "+AND+".join([f"all:{kw}" for kw in keywords])
|
| 167 |
-
# query_encoded = urllib.parse.quote(query)
|
| 168 |
-
# url = f"http://export.arxiv.org/api/query?search_query={query_encoded}&start=0&max_results=50&sortBy=submittedDate&sortOrder=descending"
|
| 169 |
-
|
| 170 |
-
# print(f"DEBUG: Query URL - {url}")
|
| 171 |
-
|
| 172 |
-
# feed = feedparser.parse(url)
|
| 173 |
-
# papers = []
|
| 174 |
-
|
| 175 |
-
# # Extract papers from arXiv
|
| 176 |
-
# for entry in feed.entries:
|
| 177 |
-
# papers.append({
|
| 178 |
-
# "title": entry.title,
|
| 179 |
-
# "authors": ", ".join(author.name for author in entry.authors),
|
| 180 |
-
# "year": entry.published[:4],
|
| 181 |
-
# "abstract": entry.summary,
|
| 182 |
-
# "link": entry.link
|
| 183 |
-
# })
|
| 184 |
-
|
| 185 |
-
# if not papers:
|
| 186 |
-
# return [{"error": "No results found. Try different keywords."}]
|
| 187 |
-
|
| 188 |
-
# # Prepare TF-IDF Vectorization
|
| 189 |
-
# corpus = [paper["title"] + " " + paper["abstract"] for paper in papers]
|
| 190 |
-
# vectorizer = TfidfVectorizer(stop_words=stopwords.words('english')) # Remove stopwords
|
| 191 |
-
# tfidf_matrix = vectorizer.fit_transform(corpus)
|
| 192 |
-
|
| 193 |
-
# # Transform Query into TF-IDF Vector
|
| 194 |
-
# query_str = " ".join(keywords)
|
| 195 |
-
# query_vec = vectorizer.transform([query_str])
|
| 196 |
-
|
| 197 |
-
# #Compute Cosine Similarity
|
| 198 |
-
# similarity_scores = cosine_similarity(query_vec, tfidf_matrix).flatten()
|
| 199 |
-
|
| 200 |
-
# #Sort papers based on similarity score
|
| 201 |
-
# ranked_papers = sorted(zip(papers, similarity_scores), key=lambda x: x[1], reverse=True)
|
| 202 |
-
|
| 203 |
-
# # Return the most relevant papers
|
| 204 |
-
# return [paper[0] for paper in ranked_papers[:num_results]]
|
| 205 |
-
|
| 206 |
-
# except Exception as e:
|
| 207 |
-
# print(f"ERROR: {str(e)}")
|
| 208 |
-
# return [{"error": f"Error fetching research papers: {str(e)}"}]
|
| 209 |
-
# @tool
|
| 210 |
-
# def get_current_time_in_timezone(timezone: str) -> str:
|
| 211 |
-
# """A tool that fetches the current local time in a specified timezone.
|
| 212 |
-
# Args:
|
| 213 |
-
# timezone: A string representing a valid timezone (e.g., 'America/New_York').
|
| 214 |
-
# """
|
| 215 |
-
# try:
|
| 216 |
-
# # Create timezone object
|
| 217 |
-
# tz = pytz.timezone(timezone)
|
| 218 |
-
# # Get current time in that timezone
|
| 219 |
-
# local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
|
| 220 |
-
# return f"The current local time in {timezone} is: {local_time}"
|
| 221 |
-
# except Exception as e:
|
| 222 |
-
# return f"Error fetching time for timezone '{timezone}': {str(e)}"
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
# final_answer = FinalAnswerTool()
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
# # AI Model
|
| 229 |
-
# model = HfApiModel(
|
| 230 |
-
# max_tokens=2096,
|
| 231 |
-
# temperature=0.5,
|
| 232 |
-
# model_id='Qwen/Qwen2.5-Coder-32B-Instruct',
|
| 233 |
-
# custom_role_conversions=None,
|
| 234 |
-
# )
|
| 235 |
-
|
| 236 |
-
# # Import tool from Hub
|
| 237 |
-
# image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
# # Load prompt templates
|
| 241 |
-
# with open("prompts.yaml", 'r') as stream:
|
| 242 |
-
# prompt_templates = yaml.safe_load(stream)
|
| 243 |
-
|
| 244 |
-
# # Create the AI Agent
|
| 245 |
-
# agent = CodeAgent(
|
| 246 |
-
# model=model,
|
| 247 |
-
# tools=[final_answer,fetch_latest_arxiv_papers], # Add your tools here
|
| 248 |
-
# max_steps=6,
|
| 249 |
-
# verbosity_level=1,
|
| 250 |
-
# grammar=None,
|
| 251 |
-
# planning_interval=None,
|
| 252 |
-
# name="ScholarAgent",
|
| 253 |
-
# description="An AI agent that fetches the latest research papers from arXiv based on user-defined keywords and filters.",
|
| 254 |
-
# prompt_templates=prompt_templates
|
| 255 |
-
# )
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
# #Search Papers
|
| 260 |
-
# def search_papers(user_input):
|
| 261 |
-
# keywords = [kw.strip() for kw in user_input.split(",") if kw.strip()] # Ensure valid keywords
|
| 262 |
-
# print(f"DEBUG: Received input keywords - {keywords}") # Debug user input
|
| 263 |
-
|
| 264 |
-
# if not keywords:
|
| 265 |
-
# print("DEBUG: No valid keywords provided.")
|
| 266 |
-
# return "Error: Please enter at least one valid keyword."
|
| 267 |
-
|
| 268 |
-
# results = fetch_latest_arxiv_papers(keywords, num_results=3) # Fetch 3 results
|
| 269 |
-
# print(f"DEBUG: Results received - {results}") # Debug function output
|
| 270 |
-
|
| 271 |
-
# # Check if the API returned an error
|
| 272 |
-
# if isinstance(results, list) and len(results) > 0 and "error" in results[0]:
|
| 273 |
-
# return results[0]["error"] # Return the error message directly
|
| 274 |
-
|
| 275 |
-
# # Format results only if valid papers exist
|
| 276 |
-
# if isinstance(results, list) and results and isinstance(results[0], dict):
|
| 277 |
-
# formatted_results = "\n\n".join([
|
| 278 |
-
# f"---\n\n"
|
| 279 |
-
# f"📌 **Title:** {paper['title']}\n\n"
|
| 280 |
-
# f"👨🔬 **Authors:** {paper['authors']}\n\n"
|
| 281 |
-
# f"📅 **Year:** {paper['year']}\n\n"
|
| 282 |
-
# f"📖 **Abstract:** {paper['abstract'][:500]}... *(truncated for readability)*\n\n"
|
| 283 |
-
# f"[🔗 Read Full Paper]({paper['link']})\n\n"
|
| 284 |
-
# for paper in results
|
| 285 |
-
# ])
|
| 286 |
-
# return formatted_results
|
| 287 |
-
|
| 288 |
-
# print("DEBUG: No results found.")
|
| 289 |
-
# return "No results found. Try different keywords."
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
# # Create Gradio UI
|
| 294 |
-
# with gr.Blocks() as demo:
|
| 295 |
-
# gr.Markdown("# ScholarAgent")
|
| 296 |
-
# keyword_input = gr.Textbox(label="Enter keywords(comma-separated) or even full sentences ", placeholder="e.g., deep learning, reinforcement learning or NLP in finance or Deep learning in Medicine")
|
| 297 |
-
# output_display = gr.Markdown()
|
| 298 |
-
# search_button = gr.Button("Search")
|
| 299 |
-
|
| 300 |
-
# search_button.click(search_papers, inputs=[keyword_input], outputs=[output_display])
|
| 301 |
-
|
| 302 |
-
# print("DEBUG: Gradio UI is running. Waiting for user input...")
|
| 303 |
-
|
| 304 |
-
# # Launch Gradio App
|
| 305 |
-
# demo.launch()
|
| 306 |
-
|
| 307 |
-
"""------Enhanced ScholarAgent with Fixes and Features-----"""
|
| 308 |
import feedparser
|
| 309 |
import urllib.parse
|
| 310 |
import yaml
|
| 311 |
-
import
|
| 312 |
import numpy as np
|
| 313 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 314 |
from sklearn.metrics.pairwise import cosine_similarity
|
| 315 |
import gradio as gr
|
| 316 |
-
from smolagents import CodeAgent, HfApiModel,
|
| 317 |
import nltk
|
| 318 |
-
from transformers import pipeline
|
| 319 |
|
| 320 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 321 |
nltk.download("stopwords")
|
| 322 |
-
nltk.download("punkt")
|
| 323 |
from nltk.corpus import stopwords
|
| 324 |
|
| 325 |
-
# ✅
|
| 326 |
-
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
| 327 |
-
|
| 328 |
-
@tool
|
| 329 |
def fetch_latest_arxiv_papers(keywords: list, num_results: int = 5) -> list:
|
| 330 |
-
"""
|
| 331 |
-
Fetches and ranks arXiv papers using optimized TF-IDF and Cosine Similarity.
|
| 332 |
|
| 333 |
Args:
|
| 334 |
keywords: List of keywords for search.
|
|
@@ -338,16 +160,19 @@ def fetch_latest_arxiv_papers(keywords: list, num_results: int = 5) -> list:
|
|
| 338 |
List of the most relevant papers based on TF-IDF ranking.
|
| 339 |
"""
|
| 340 |
try:
|
| 341 |
-
|
| 342 |
-
query = "+AND+".join([f"all:{kw}" for kw in keywords])
|
| 343 |
-
query_encoded = urllib.parse.quote_plus(query)
|
| 344 |
|
| 345 |
-
|
| 346 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 347 |
|
| 348 |
feed = feedparser.parse(url)
|
| 349 |
papers = []
|
| 350 |
|
|
|
|
| 351 |
for entry in feed.entries:
|
| 352 |
papers.append({
|
| 353 |
"title": entry.title,
|
|
@@ -358,77 +183,49 @@ def fetch_latest_arxiv_papers(keywords: list, num_results: int = 5) -> list:
|
|
| 358 |
})
|
| 359 |
|
| 360 |
if not papers:
|
| 361 |
-
print("DEBUG: No results from ArXiv API")
|
| 362 |
return [{"error": "No results found. Try different keywords."}]
|
| 363 |
|
| 364 |
-
#
|
| 365 |
corpus = [paper["title"] + " " + paper["abstract"] for paper in papers]
|
| 366 |
-
vectorizer = TfidfVectorizer(stop_words=stopwords.words('english')
|
| 367 |
tfidf_matrix = vectorizer.fit_transform(corpus)
|
| 368 |
|
| 369 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 370 |
similarity_scores = cosine_similarity(query_vec, tfidf_matrix).flatten()
|
| 371 |
|
|
|
|
| 372 |
ranked_papers = sorted(zip(papers, similarity_scores), key=lambda x: x[1], reverse=True)
|
| 373 |
|
| 374 |
-
#
|
| 375 |
-
for paper, _ in ranked_papers:
|
| 376 |
-
try:
|
| 377 |
-
paper["summary"] = summarizer(paper["abstract"], max_length=100, min_length=30, do_sample=False)[0]["summary_text"]
|
| 378 |
-
except:
|
| 379 |
-
paper["summary"] = paper["abstract"][:300] + "..." # ✅ Fallback: First 300 characters of abstract
|
| 380 |
-
|
| 381 |
return [paper[0] for paper in ranked_papers[:num_results]]
|
| 382 |
|
| 383 |
except Exception as e:
|
| 384 |
print(f"ERROR: {str(e)}")
|
| 385 |
return [{"error": f"Error fetching research papers: {str(e)}"}]
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
@tool
|
| 391 |
-
def
|
| 392 |
-
"""
|
| 393 |
-
Fetches citation count from Semantic Scholar API.
|
| 394 |
-
|
| 395 |
Args:
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
Returns:
|
| 399 |
-
int: Citation count (default 0 if not found).
|
| 400 |
"""
|
| 401 |
try:
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
return response["data"][0].get("citationCount", 0)
|
| 408 |
-
return 0 # Default to 0 if no data found
|
| 409 |
-
|
| 410 |
except Exception as e:
|
| 411 |
-
|
| 412 |
-
return 0
|
| 413 |
|
| 414 |
|
| 415 |
-
|
| 416 |
-
def rank_papers_by_citations(papers: list) -> list:
|
| 417 |
-
"""
|
| 418 |
-
Ranks papers based on citation count and TF-IDF similarity.
|
| 419 |
-
|
| 420 |
-
Args:
|
| 421 |
-
papers (list): List of research papers.
|
| 422 |
|
| 423 |
-
Returns:
|
| 424 |
-
list: Papers sorted by citation count and TF-IDF score.
|
| 425 |
-
"""
|
| 426 |
-
for paper in papers:
|
| 427 |
-
paper["citations"] = get_citation_count(paper["title"])
|
| 428 |
-
return sorted(papers, key=lambda x: (x["citations"], x.get("tfidf_score", 0)), reverse=True)
|
| 429 |
|
| 430 |
-
|
| 431 |
-
# ✅ AI Model
|
| 432 |
model = HfApiModel(
|
| 433 |
max_tokens=2096,
|
| 434 |
temperature=0.5,
|
|
@@ -436,65 +233,76 @@ model = HfApiModel(
|
|
| 436 |
custom_role_conversions=None,
|
| 437 |
)
|
| 438 |
|
| 439 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
| 440 |
with open("prompts.yaml", 'r') as stream:
|
| 441 |
prompt_templates = yaml.safe_load(stream)
|
| 442 |
|
| 443 |
-
#
|
| 444 |
agent = CodeAgent(
|
| 445 |
model=model,
|
| 446 |
-
tools=[fetch_latest_arxiv_papers,
|
| 447 |
max_steps=6,
|
| 448 |
verbosity_level=1,
|
| 449 |
grammar=None,
|
| 450 |
planning_interval=None,
|
| 451 |
name="ScholarAgent",
|
| 452 |
-
description="An AI agent that fetches
|
| 453 |
prompt_templates=prompt_templates
|
| 454 |
)
|
| 455 |
|
| 456 |
|
| 457 |
-
# ✅ Gradio UI
|
| 458 |
-
with gr.Blocks() as demo:
|
| 459 |
-
gr.Markdown("# ScholarAgent")
|
| 460 |
-
keyword_input = gr.Textbox(label="Enter keywords or full sentences", placeholder="e.g., deep learning, reinforcement learning")
|
| 461 |
-
output_display = gr.Markdown()
|
| 462 |
-
search_button = gr.Button("Search")
|
| 463 |
|
| 464 |
-
|
| 465 |
-
|
| 466 |
-
|
|
|
|
| 467 |
|
| 468 |
-
|
| 469 |
-
|
| 470 |
-
|
| 471 |
-
|
| 472 |
-
results = fetch_latest_arxiv_papers(keywords, num_results=5, year_range=year_range, min_citations=int(min_citations))
|
| 473 |
-
print(f"DEBUG: Results received - {results}")
|
| 474 |
-
|
| 475 |
-
# If results are empty or an error occurred, display an error message
|
| 476 |
-
if not results or isinstance(results, list) and "error" in results[0]:
|
| 477 |
-
print(f"DEBUG: Error in fetching results - {results[0]['error']}")
|
| 478 |
-
return results[0]["error"] if results else "No results found. Try different keywords."
|
| 479 |
|
| 480 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 481 |
formatted_results = "\n\n".join([
|
|
|
|
| 482 |
f"📌 **Title:** {paper['title']}\n\n"
|
| 483 |
f"👨🔬 **Authors:** {paper['authors']}\n\n"
|
| 484 |
f"📅 **Year:** {paper['year']}\n\n"
|
| 485 |
-
f"📖 **
|
| 486 |
-
f"🔢 **Citations:** {paper['citations']}\n\n"
|
| 487 |
f"[🔗 Read Full Paper]({paper['link']})\n\n"
|
| 488 |
for paper in results
|
| 489 |
])
|
| 490 |
-
print(f"DEBUG: Formatted Results - {formatted_results}")
|
| 491 |
return formatted_results
|
| 492 |
|
| 493 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 494 |
search_button.click(search_papers, inputs=[keyword_input], outputs=[output_display])
|
|
|
|
| 495 |
print("DEBUG: Gradio UI is running. Waiting for user input...")
|
| 496 |
|
| 497 |
-
#
|
| 498 |
demo.launch()
|
| 499 |
|
| 500 |
|
|
|
|
|
|
| 126 |
# # return [{"error": f"Error fetching research papers: {str(e)}"}]
|
| 127 |
|
| 128 |
|
| 129 |
+
"""------Applied TF-IDF for better semantic search------"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
import feedparser
|
| 131 |
import urllib.parse
|
| 132 |
import yaml
|
| 133 |
+
from tools.final_answer import FinalAnswerTool
|
| 134 |
import numpy as np
|
| 135 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 136 |
from sklearn.metrics.pairwise import cosine_similarity
|
| 137 |
import gradio as gr
|
| 138 |
+
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
|
| 139 |
import nltk
|
|
|
|
| 140 |
|
| 141 |
+
import datetime
|
| 142 |
+
import requests
|
| 143 |
+
import pytz
|
| 144 |
+
from tools.final_answer import FinalAnswerTool
|
| 145 |
+
|
| 146 |
+
from Gradio_UI import GradioUI
|
| 147 |
+
|
| 148 |
nltk.download("stopwords")
|
|
|
|
| 149 |
from nltk.corpus import stopwords
|
| 150 |
|
| 151 |
+
@tool # ✅ Register the function properly as a SmolAgents tool
|
|
|
|
|
|
|
|
|
|
| 152 |
def fetch_latest_arxiv_papers(keywords: list, num_results: int = 5) -> list:
|
| 153 |
+
"""Fetches and ranks arXiv papers using TF-IDF and Cosine Similarity.
|
|
|
|
| 154 |
|
| 155 |
Args:
|
| 156 |
keywords: List of keywords for search.
|
|
|
|
| 160 |
List of the most relevant papers based on TF-IDF ranking.
|
| 161 |
"""
|
| 162 |
try:
|
| 163 |
+
print(f"DEBUG: Searching arXiv papers with keywords: {keywords}")
|
|
|
|
|
|
|
| 164 |
|
| 165 |
+
# Use a general keyword search
|
| 166 |
+
query = "+AND+".join([f"all:{kw}" for kw in keywords])
|
| 167 |
+
query_encoded = urllib.parse.quote(query)
|
| 168 |
+
url = f"http://export.arxiv.org/api/query?search_query={query_encoded}&start=0&max_results=50&sortBy=submittedDate&sortOrder=descending"
|
| 169 |
+
|
| 170 |
+
print(f"DEBUG: Query URL - {url}")
|
| 171 |
|
| 172 |
feed = feedparser.parse(url)
|
| 173 |
papers = []
|
| 174 |
|
| 175 |
+
# Extract papers from arXiv
|
| 176 |
for entry in feed.entries:
|
| 177 |
papers.append({
|
| 178 |
"title": entry.title,
|
|
|
|
| 183 |
})
|
| 184 |
|
| 185 |
if not papers:
|
|
|
|
| 186 |
return [{"error": "No results found. Try different keywords."}]
|
| 187 |
|
| 188 |
+
# Prepare TF-IDF Vectorization
|
| 189 |
corpus = [paper["title"] + " " + paper["abstract"] for paper in papers]
|
| 190 |
+
vectorizer = TfidfVectorizer(stop_words=stopwords.words('english')) # Remove stopwords
|
| 191 |
tfidf_matrix = vectorizer.fit_transform(corpus)
|
| 192 |
|
| 193 |
+
# Transform Query into TF-IDF Vector
|
| 194 |
+
query_str = " ".join(keywords)
|
| 195 |
+
query_vec = vectorizer.transform([query_str])
|
| 196 |
+
|
| 197 |
+
#Compute Cosine Similarity
|
| 198 |
similarity_scores = cosine_similarity(query_vec, tfidf_matrix).flatten()
|
| 199 |
|
| 200 |
+
#Sort papers based on similarity score
|
| 201 |
ranked_papers = sorted(zip(papers, similarity_scores), key=lambda x: x[1], reverse=True)
|
| 202 |
|
| 203 |
+
# Return the most relevant papers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
return [paper[0] for paper in ranked_papers[:num_results]]
|
| 205 |
|
| 206 |
except Exception as e:
|
| 207 |
print(f"ERROR: {str(e)}")
|
| 208 |
return [{"error": f"Error fetching research papers: {str(e)}"}]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 209 |
@tool
|
| 210 |
+
def get_current_time_in_timezone(timezone: str) -> str:
|
| 211 |
+
"""A tool that fetches the current local time in a specified timezone.
|
|
|
|
|
|
|
| 212 |
Args:
|
| 213 |
+
timezone: A string representing a valid timezone (e.g., 'America/New_York').
|
|
|
|
|
|
|
|
|
|
| 214 |
"""
|
| 215 |
try:
|
| 216 |
+
# Create timezone object
|
| 217 |
+
tz = pytz.timezone(timezone)
|
| 218 |
+
# Get current time in that timezone
|
| 219 |
+
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
|
| 220 |
+
return f"The current local time in {timezone} is: {local_time}"
|
|
|
|
|
|
|
|
|
|
| 221 |
except Exception as e:
|
| 222 |
+
return f"Error fetching time for timezone '{timezone}': {str(e)}"
|
|
|
|
| 223 |
|
| 224 |
|
| 225 |
+
final_answer = FinalAnswerTool()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 226 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 227 |
|
| 228 |
+
# AI Model
|
|
|
|
| 229 |
model = HfApiModel(
|
| 230 |
max_tokens=2096,
|
| 231 |
temperature=0.5,
|
|
|
|
| 233 |
custom_role_conversions=None,
|
| 234 |
)
|
| 235 |
|
| 236 |
+
# Import tool from Hub
|
| 237 |
+
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
# Load prompt templates
|
| 241 |
with open("prompts.yaml", 'r') as stream:
|
| 242 |
prompt_templates = yaml.safe_load(stream)
|
| 243 |
|
| 244 |
+
# Create the AI Agent
|
| 245 |
agent = CodeAgent(
|
| 246 |
model=model,
|
| 247 |
+
tools=[final_answer,fetch_latest_arxiv_papers], # Add your tools here
|
| 248 |
max_steps=6,
|
| 249 |
verbosity_level=1,
|
| 250 |
grammar=None,
|
| 251 |
planning_interval=None,
|
| 252 |
name="ScholarAgent",
|
| 253 |
+
description="An AI agent that fetches the latest research papers from arXiv based on user-defined keywords and filters.",
|
| 254 |
prompt_templates=prompt_templates
|
| 255 |
)
|
| 256 |
|
| 257 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 258 |
|
| 259 |
+
#Search Papers
|
| 260 |
+
def search_papers(user_input):
|
| 261 |
+
keywords = [kw.strip() for kw in user_input.split(",") if kw.strip()] # Ensure valid keywords
|
| 262 |
+
print(f"DEBUG: Received input keywords - {keywords}") # Debug user input
|
| 263 |
|
| 264 |
+
if not keywords:
|
| 265 |
+
print("DEBUG: No valid keywords provided.")
|
| 266 |
+
return "Error: Please enter at least one valid keyword."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 267 |
|
| 268 |
+
results = fetch_latest_arxiv_papers(keywords, num_results=3) # Fetch 3 results
|
| 269 |
+
print(f"DEBUG: Results received - {results}") # Debug function output
|
| 270 |
+
|
| 271 |
+
# Check if the API returned an error
|
| 272 |
+
if isinstance(results, list) and len(results) > 0 and "error" in results[0]:
|
| 273 |
+
return results[0]["error"] # Return the error message directly
|
| 274 |
+
|
| 275 |
+
# Format results only if valid papers exist
|
| 276 |
+
if isinstance(results, list) and results and isinstance(results[0], dict):
|
| 277 |
formatted_results = "\n\n".join([
|
| 278 |
+
f"---\n\n"
|
| 279 |
f"📌 **Title:** {paper['title']}\n\n"
|
| 280 |
f"👨🔬 **Authors:** {paper['authors']}\n\n"
|
| 281 |
f"📅 **Year:** {paper['year']}\n\n"
|
| 282 |
+
f"📖 **Abstract:** {paper['abstract'][:500]}... *(truncated for readability)*\n\n"
|
|
|
|
| 283 |
f"[🔗 Read Full Paper]({paper['link']})\n\n"
|
| 284 |
for paper in results
|
| 285 |
])
|
|
|
|
| 286 |
return formatted_results
|
| 287 |
|
| 288 |
+
print("DEBUG: No results found.")
|
| 289 |
+
return "No results found. Try different keywords."
|
| 290 |
+
|
| 291 |
+
|
| 292 |
+
|
| 293 |
+
# Create Gradio UI
|
| 294 |
+
with gr.Blocks() as demo:
|
| 295 |
+
gr.Markdown("# ScholarAgent")
|
| 296 |
+
keyword_input = gr.Textbox(label="Enter keywords(comma-separated) or even full sentences ", placeholder="e.g., deep learning, reinforcement learning or NLP in finance or Deep learning in Medicine")
|
| 297 |
+
output_display = gr.Markdown()
|
| 298 |
+
search_button = gr.Button("Search")
|
| 299 |
+
|
| 300 |
search_button.click(search_papers, inputs=[keyword_input], outputs=[output_display])
|
| 301 |
+
|
| 302 |
print("DEBUG: Gradio UI is running. Waiting for user input...")
|
| 303 |
|
| 304 |
+
# Launch Gradio App
|
| 305 |
demo.launch()
|
| 306 |
|
| 307 |
|
| 308 |
+
|