Spaces:
Sleeping
Sleeping
File size: 33,326 Bytes
fd8df46 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 |
import streamlit as st
import plotly.express as px
import plotly.graph_objects as go
import google.generativeai as genai
import pandas as pd
from typing import List, Dict, Any
import json
import os
import re
from datetime import datetime, timedelta
import logging
from pathlib import Path
import asyncio
from collections import deque
import time
import docx
# Utility Functions
def read_file_content(file):
"""Read content from either TXT or DOCX file"""
try:
file_extension = file.name.lower().split('.')[-1]
if file_extension == 'txt':
return file.read().decode('utf-8')
elif file_extension == 'docx':
doc_bytes = file.read()
with open("temp.docx", "wb") as temp_file:
temp_file.write(doc_bytes)
doc = docx.Document("temp.docx")
content = "\n".join([paragraph.text for paragraph in doc.paragraphs])
os.remove("temp.docx")
return content
else:
raise ValueError(f"Unsupported file format: {file_extension}")
except Exception as e:
raise Exception(f"Error reading file {file.name}: {str(e)}")
# Rate Limiter Class
class RateLimiter:
def __init__(self, rpm_limit=2, tpm_limit=32000, rpd_limit=50):
self.rpm_limit = rpm_limit
self.tpm_limit = tpm_limit
self.rpd_limit = rpd_limit
self.requests = deque()
self.tokens = deque()
self.daily_requests = deque()
def can_make_request(self, token_count=0):
now = datetime.now()
while self.requests and (now - self.requests[0]) > timedelta(minutes=1):
self.requests.popleft()
while self.tokens and (now - self.tokens[0][0]) > timedelta(minutes=1):
self.tokens.popleft()
while self.daily_requests and (now - self.daily_requests[0]) > timedelta(days=1):
self.daily_requests.popleft()
if (len(self.requests) >= self.rpm_limit or
sum(tokens for _, tokens in self.tokens) + token_count > self.tpm_limit or
len(self.daily_requests) >= self.rpd_limit):
return False
return True
def add_request(self, token_count=0):
now = datetime.now()
self.requests.append(now)
self.tokens.append((now, token_count))
self.daily_requests.append(now)
def wait_time(self):
if not self.requests:
return 0
oldest_request = self.requests[0]
return max(0, 60 - (datetime.now() - oldest_request).total_seconds())
# Interview Analyzer Class
class InterviewAnalyzer:
def __init__(self, api_key: str):
"""Initialize the analyzer with API key and setup logging"""
self.setup_logging()
self.setup_gemini(api_key)
self.rate_limiter = RateLimiter()
def setup_logging(self):
"""Setup logging configuration"""
log_dir = Path("logs")
log_dir.mkdir(exist_ok=True)
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler(log_dir / f'analysis_{datetime.now().strftime("%Y%m%d_%H%M%S")}.log'),
logging.StreamHandler()
]
)
self.logger = logging.getLogger(__name__)
def setup_gemini(self, api_key: str):
"""Setup Gemini API"""
try:
genai.configure(api_key=api_key)
self.model = genai.GenerativeModel("gemini-1.5-pro")
self.logger.info("Gemini API initialized successfully")
except Exception as e:
self.logger.error(f"Failed to initialize Gemini API: {str(e)}")
raise
def extract_interview_data(self, content: str, filename: str) -> Dict[str, str]:
"""Extract relevant information from the document content"""
# Extract name from content using regex
name_match = re.search(r'Interview\s*[-ββ]\s*([^\n]+)', content)
name = name_match.group(1).strip() if name_match else "Unknown"
# Clean the content
cleaned_content = self.clean_text(content)
return {
'name': name,
'content': cleaned_content,
'source': filename
}
def clean_text(self, text: str) -> str:
"""Clean and normalize text content"""
# Remove special characters and normalize whitespace
text = re.sub(r'\\n', '\n', text)
text = re.sub(r'\s+', ' ', text)
text = re.sub(r'\*\*', '', text) # Remove markdown-style formatting
return text.strip()
def clean_gemini_response(self, response_text: str) -> str:
"""Clean and format Gemini API response to ensure valid JSON"""
try:
# Use regex to find the first JSON object
match = re.search(r'({.*})', response_text, re.DOTALL)
if not match:
self.logger.error("No JSON structure found in response")
return None
json_str = match.group(1)
# Remove any Markdown or code block indicators
json_str = re.sub(r'```json\s*', '', json_str)
json_str = re.sub(r'```\s*', '', json_str)
# Validate JSON structure
json.loads(json_str)
return json_str
except json.JSONDecodeError:
self.logger.error("Invalid JSON structure after cleaning")
return None
except Exception as e:
self.logger.error(f"Error cleaning response: {str(e)}")
return None
def create_analysis_prompt(self, interview_data: Dict[str, str]) -> str:
"""Create a structured prompt for analysis"""
return f"""
You are a career analysis expert. Analyze this interview transcript for {interview_data['name']}
regarding their career path prediction (Academia vs Industry).
Provide your analysis in the following JSON format ONLY, without any additional text or markdown:
{{
"interviewee": {{
"name": "{interview_data['name']}",
"source_document": "{interview_data['source']}"
}},
"sentiment_analysis": {{
"academia": {{
"research": {{"score": 0.0, "quotes": []}},
"teaching": {{"score": 0.0, "quotes": []}},
"publication": {{"score": 0.0, "quotes": []}},
"grant_writing": {{"score": 0.0, "quotes": []}},
"mentoring": {{"score": 0.0, "quotes": []}},
"work_life_balance": {{"score": 0.0, "quotes": []}},
"collaboration": {{"score": 0.0, "quotes": []}}
}},
"industry": {{
"product_development": {{"score": 0.0, "quotes": []}},
"business_strategy": {{"score": 0.0, "quotes": []}},
"management": {{"score": 0.0, "quotes": []}},
"work_life_balance": {{"score": 0.0, "quotes": []}},
"financial_rewards": {{"score": 0.0, "quotes": []}}
}}
}},
"keyword_analysis": {{
"academia": [],
"industry": []
}},
"themes": [],
"motivations": {{
"primary": [],
"intrinsic": [],
"extrinsic": [],
"evidence_quotes": []
}},
"risk_assessment": {{
"level": "",
"description": "",
"supporting_quotes": []
}},
"long_term_goals": {{
"vision": "",
"alignment": "",
"supporting_quotes": []
}},
"career_prediction": {{
"path": "",
"confidence": 0,
"rationale": ""
}}
}}
Here is the interview transcript to analyze:
{interview_data['content']}
Analyze the transcript and fill in the JSON structure with your findings. Ensure all scores are between -1.0 and 1.0,
confidence is between 1 and 10, and include relevant quotes from the text to support your analysis.
Return ONLY the JSON structure without any additional text or formatting.
"""
def analyze_transcript(self, interview_data: Dict[str, str]) -> Dict:
"""Analyze a single transcript using Gemini API with rate limiting"""
try:
prompt = self.create_analysis_prompt(interview_data)
estimated_tokens = len(prompt.split()) # rough estimation
# Check rate limits
while not self.rate_limiter.can_make_request(estimated_tokens):
wait_time = self.rate_limiter.wait_time()
st.warning(f"Rate limit reached. Waiting {wait_time:.1f} seconds...")
time.sleep(wait_time + 1) # Add 1 second buffer
# Make the API call
st.info("Making API request...")
response = self.model.generate_content(prompt)
self.rate_limiter.add_request(estimated_tokens)
if not response or not response.text:
st.error("Received empty response from API")
return None
# Clean and parse the response
cleaned_response = self.clean_gemini_response(response.text)
if not cleaned_response:
st.error("Failed to extract valid JSON from API response")
return None
# Parse the cleaned JSON
analysis = json.loads(cleaned_response)
analysis['metadata'] = {
'analysis_timestamp': datetime.now().isoformat(),
'source_document': interview_data['source']
}
return analysis
except Exception as e:
st.error(f"Analysis Error: {str(e)}")
self.logger.error(f"Error analyzing transcript for {interview_data['name']}: {str(e)}")
return None
def _validate_analysis_structure(self, analysis: Dict, interview_data: Dict) -> Dict:
"""Validate and fix analysis structure if needed"""
template = {
"interviewee": {
"name": interview_data['name'],
"source_document": interview_data['source']
},
"sentiment_analysis": {
"academia": {},
"industry": {}
},
"keyword_analysis": {
"academia": [],
"industry": []
},
"themes": [],
"motivations": {
"primary": [],
"intrinsic": [],
"extrinsic": [],
"evidence_quotes": []
},
"risk_assessment": {
"level": "",
"description": "",
"supporting_quotes": []
},
"long_term_goals": {
"vision": "",
"alignment": "",
"supporting_quotes": []
},
"career_prediction": {
"path": "",
"confidence": 0,
"rationale": ""
},
"metadata": {
"analysis_timestamp": datetime.now().isoformat(),
"source_document": interview_data['source']
}
}
for key, value in template.items():
if key not in analysis:
analysis[key] = value
return analysis
def display_analysis_results(self, analysis: Dict):
"""Display analysis results in Streamlit with enhanced visualizations"""
try:
st.subheader(f"Analysis for {analysis.get('interviewee', {}).get('name', 'Unknown')}")
col1, col2 = st.columns(2)
with col1:
st.write("#### Career Prediction")
prediction = analysis.get('career_prediction', {})
st.write(f"**Predicted Path:** {prediction.get('path', 'Unknown')}")
st.write(f"**Confidence:** {prediction.get('confidence', 0)}/10")
st.write("**Rationale:**", prediction.get('rationale', 'Not available'))
with col2:
st.write("#### Sentiment Analysis")
sentiment = analysis.get('sentiment_analysis', {})
st.write(f"**Academia:** {self._safe_calculate_sentiment(sentiment.get('academia', {}))}")
st.write(f"**Industry:** {self._safe_calculate_sentiment(sentiment.get('industry', {}))}")
# Radar Chart
st.write("### Sentiment Analysis Radar Chart")
radar_fig = self.create_radar_chart(analysis)
st.plotly_chart(radar_fig)
# Bar Chart
st.write("### Sentiment Scores Bar Chart")
bar_fig = self.create_bar_chart(analysis)
st.plotly_chart(bar_fig)
# Pie Chart for Motivations
st.write("### Motivations Breakdown")
motivations = analysis.get('motivations', {})
pie_fig = self.create_pie_chart({
'Primary': motivations.get('primary', []),
'Intrinsic': motivations.get('intrinsic', []),
'Extrinsic': motivations.get('extrinsic', [])
}, "Motivations Distribution")
st.plotly_chart(pie_fig)
# Themes
st.write("### Key Themes")
themes = analysis.get('themes', [])
if isinstance(themes, list):
for theme in themes:
if isinstance(theme, dict):
st.write(f"- **{theme.get('name', '')}:** {theme.get('description', '')}")
# Motivations Details
st.write("### Motivations")
motivations = analysis.get('motivations', {})
st.write(f"**Primary:** {', '.join(motivations.get('primary', []))}")
st.write(f"**Intrinsic:** {', '.join(motivations.get('intrinsic', []))}")
st.write(f"**Extrinsic:** {', '.join(motivations.get('extrinsic', []))}")
# Risk Assessment
st.write("### Risk Assessment")
risk = analysis.get('risk_assessment', {})
st.write(f"**Level:** {risk.get('level', 'Unknown')}")
st.write(risk.get('description', 'Not available'))
# Long Term Goals
st.write("### Long Term Goals")
goals = analysis.get('long_term_goals', {})
st.write(f"**Vision:** {goals.get('vision', '')}")
st.write(f"**Alignment:** {goals.get('alignment', '')}")
except Exception as e:
st.error(f"Error displaying analysis: {str(e)}")
def generate_summary_table(self, analyses: List[Dict]) -> pd.DataFrame:
"""Generate a summary table from all analyses"""
summary_data = []
for analysis in analyses:
if not analysis:
continue
try:
themes = []
if isinstance(analysis.get('themes', []), list):
themes = [theme.get('name', '') for theme in analysis['themes'] if isinstance(theme, dict)]
motivations = []
if isinstance(analysis.get('motivations', {}), dict):
motivations = analysis['motivations'].get('primary', [])
summary_row = {
'Name': analysis.get('interviewee', {}).get('name', 'Unknown'),
'Predicted Career Path': analysis.get('career_prediction', {}).get('path', 'Unknown'),
'Confidence Score': analysis.get('career_prediction', {}).get('confidence', 0),
'Primary Motivations': ', '.join(motivations) if isinstance(motivations, list) else '',
'Risk Level': analysis.get('risk_assessment', {}).get('level', 'Unknown'),
'Key Themes': ', '.join(themes),
'Academia Sentiment': self._safe_calculate_sentiment(analysis.get('sentiment_analysis', {}).get('academia', {})),
'Industry Sentiment': self._safe_calculate_sentiment(analysis.get('sentiment_analysis', {}).get('industry', {})),
'Source Document': analysis.get('metadata', {}).get('source_document', 'Unknown')
}
summary_data.append(summary_row)
except Exception as e:
self.logger.error(f"Error processing analysis for summary: {str(e)}")
st.error(f"Error processing analysis: {str(e)}")
continue
return pd.DataFrame(summary_data)
def _safe_calculate_sentiment(self, sentiment_dict: Dict) -> float:
"""Safely calculate average sentiment score from a sentiment dictionary"""
try:
if not isinstance(sentiment_dict, dict):
return 0.0
scores = []
for item in sentiment_dict.values():
if isinstance(item, dict) and 'score' in item:
try:
scores.append(float(item['score']))
except (ValueError, TypeError):
continue
return round(sum(scores) / len(scores), 2) if scores else 0.0
except Exception:
return 0.0
# Visualization Methods
def create_radar_chart(self, analysis: Dict) -> go.Figure:
"""Create a radar chart for sentiment analysis"""
try:
academia_scores = analysis.get('sentiment_analysis', {}).get('academia', {})
industry_scores = analysis.get('sentiment_analysis', {}).get('industry', {})
# Define separate categories for academia and industry
academia_categories = list(academia_scores.keys())
industry_categories = list(industry_scores.keys())
# Combine categories for consistent radar chart
categories = sorted(list(set(academia_categories + industry_categories)))
# Prepare values, aligning categories
academia_values = [academia_scores.get(cat, {}).get('score', 0.0) for cat in categories]
industry_values = [industry_scores.get(cat, {}).get('score', 0.0) for cat in categories]
# Create radar chart
fig = go.Figure()
fig.add_trace(go.Scatterpolar(
r=academia_values,
theta=categories,
fill='toself',
name='Academia'
))
fig.add_trace(go.Scatterpolar(
r=industry_values,
theta=categories,
fill='toself',
name='Industry'
))
fig.update_layout(
polar=dict(
radialaxis=dict(
visible=True,
range=[-1, 1]
)
),
showlegend=True,
title=f"Sentiment Analysis Radar for {analysis['interviewee']['name']}"
)
return fig
except Exception as e:
self.logger.error(f"Error creating radar chart: {str(e)}")
return go.Figure()
def create_bar_chart(self, analysis: Dict) -> go.Figure:
"""Create a bar chart for sentiment scores"""
try:
academia_scores = analysis.get('sentiment_analysis', {}).get('academia', {})
industry_scores = analysis.get('sentiment_analysis', {}).get('industry', {})
# Define categories for academia and industry
academia_categories = list(academia_scores.keys())
industry_categories = list(industry_scores.keys())
# Create separate dataframes
df_academia = pd.DataFrame({
'Category': academia_categories,
'Sentiment': [academia_scores[cat]['score'] for cat in academia_categories],
'Sector': ['Academia'] * len(academia_categories)
})
df_industry = pd.DataFrame({
'Category': industry_categories,
'Sentiment': [industry_scores[cat]['score'] for cat in industry_categories],
'Sector': ['Industry'] * len(industry_categories)
})
# Combine dataframes
df = pd.concat([df_academia, df_industry], ignore_index=True)
fig = px.bar(df, x='Category', y='Sentiment', color='Sector', barmode='group',
title=f"Sentiment Scores for {analysis['interviewee']['name']}",
range_y=[-1, 1])
return fig
except Exception as e:
self.logger.error(f"Error creating bar chart: {str(e)}")
return go.Figure()
def create_pie_chart(self, motivations: Dict[str, List[str]], title: str) -> go.Figure:
"""Create a pie chart for motivations breakdown"""
try:
labels = list(motivations.keys())
values = [len(v) for v in motivations.values()]
fig = px.pie(names=labels, values=values, title=title)
return fig
except Exception as e:
self.logger.error(f"Error creating pie chart: {str(e)}")
return go.Figure()
# Additional Features
def comparative_dashboard(self):
"""Comparative Analysis Dashboard"""
st.header("Comparative Analysis")
selected = st.multiselect("Select Interviewees to Compare",
options=[a['interviewee']['name'] for a in st.session_state.analyses])
if len(selected) >= 2:
selected_analyses = [a for a in st.session_state.analyses if a['interviewee']['name'] in selected]
fig = go.Figure()
for analysis in selected_analyses:
academia_scores = analysis.get('sentiment_analysis', {}).get('academia', {})
industry_scores = analysis.get('sentiment_analysis', {}).get('industry', {})
academia_categories = list(academia_scores.keys())
industry_categories = list(industry_scores.keys())
categories = sorted(list(set(academia_categories + industry_categories)))
academia_values = [academia_scores.get(cat, {}).get('score', 0.0) for cat in categories]
industry_values = [industry_scores.get(cat, {}).get('score', 0.0) for cat in categories]
# Academia Trace
fig.add_trace(go.Scatterpolar(
r=academia_values,
theta=categories,
fill='toself',
name=f"{analysis['interviewee']['name']} - Academia"
))
# Industry Trace
fig.add_trace(go.Scatterpolar(
r=industry_values,
theta=categories,
fill='toself',
name=f"{analysis['interviewee']['name']} - Industry"
))
fig.update_layout(
polar=dict(
radialaxis=dict(
visible=True,
range=[-1, 1]
)
),
showlegend=True,
title="Comparative Sentiment Analysis Radar Chart"
)
st.plotly_chart(fig)
elif len(selected) == 1:
st.info("Select at least two interviewees to compare sentiment analyses.")
def clear_chat(self):
"""Clear the chat history"""
st.session_state.chat_history = []
def chat_interface(self):
"""Chat section to ask questions about uploaded files"""
st.header("π’ Chat with Analysis")
if 'chat_history' not in st.session_state:
st.session_state.chat_history = []
# Display chat history
for chat in st.session_state.chat_history:
if chat['role'] == 'user':
st.markdown(f"**You:** {chat['content']}")
else:
st.markdown(f"**Assistant:** {chat['content']}")
# User input
user_input = st.text_input("Ask a question about your uploaded files:")
if st.button("Send") and user_input:
st.session_state.chat_history.append({"role": "user", "content": user_input})
response = self.handle_chat(user_input)
st.session_state.chat_history.append({"role": "assistant", "content": response})
def handle_chat(self, question: str) -> str:
"""Handle user questions by sending them to the Gemini API with context"""
try:
# Compile all analyses into a summary
summary = ""
for analysis in st.session_state.analyses:
summary += f"Interviewee: {analysis.get('interviewee', {}).get('name', 'Unknown')}\n"
summary += json.dumps(analysis, indent=2) + "\n\n"
# Create prompt for Gemini
prompt = f"""
You are an assistant specialized in analyzing interview data. Based on the following analysis summaries, answer the user's question concisely. Provide your answer in JSON format only, without any additional text or explanations.
Analysis Summaries:
{summary}
User Question: {question}
JSON Response:
"""
# Rate limiting
estimated_tokens = len(prompt.split())
while not self.rate_limiter.can_make_request(estimated_tokens):
wait_time = self.rate_limiter.wait_time()
st.warning(f"Rate limit reached. Waiting {wait_time:.1f} seconds before answering your question...")
time.sleep(wait_time + 1) # Add 1 second buffer
# Make API call
response = self.model.generate_content(prompt)
self.rate_limiter.add_request(estimated_tokens)
if not response or not response.text:
return "I'm sorry, I couldn't retrieve an answer at this time."
# Clean and parse the response
cleaned_response = self.clean_gemini_response(response.text)
if not cleaned_response:
self.logger.debug(f"Raw API response: {response.text}")
return "I'm sorry, I couldn't understand the response from the analysis."
return cleaned_response
except Exception as e:
self.logger.error(f"Chat Error: {str(e)}")
return "An error occurred while processing your request."
# Main Application
def main():
st.set_page_config(
page_title="Interview Analysis App",
layout="wide",
initial_sidebar_state="expanded"
)
st.title("π Interview Analysis App")
st.markdown("""
This app analyzes interview transcripts to predict career paths and provide detailed insights.
Upload your interview transcripts to get started.
""")
# Sidebar Configuration
with st.sidebar:
st.header("π§ Configuration")
api_key = st.text_input(
"Enter your Gemini API Key",
type="password",
help="Your Gemini API key is required for analysis"
)
st.subheader("βοΈ Analysis Settings")
show_details = st.checkbox("Show detailed analysis", value=True)
confidence_threshold = st.slider(
"Confidence Threshold",
min_value=1,
max_value=10,
value=5,
help="Minimum confidence score for predictions"
)
st.markdown("""
### π API Rate Limits
- **2 requests per minute**
- **32,000 tokens per minute**
- **50 requests per day**
""")
if not api_key:
st.warning("β οΈ Please enter your Gemini API Key in the sidebar to continue")
st.stop()
# Initialize session state
if 'analyses' not in st.session_state:
st.session_state.analyses = []
if 'processed_files' not in st.session_state:
st.session_state.processed_files = set()
if 'rate_limiter' not in st.session_state:
st.session_state.rate_limiter = RateLimiter()
if 'chat_history' not in st.session_state:
st.session_state.chat_history = []
try:
analyzer = InterviewAnalyzer(api_key)
st.header("π€ Upload Interview Transcripts")
uploaded_files = st.file_uploader(
"Upload your interview transcripts",
accept_multiple_files=True,
type=['txt', 'docx'],
help="Supported formats: TXT, DOCX"
)
if uploaded_files:
for file in uploaded_files:
file_id = f"{file.name}_{file.size}"
if file_id in st.session_state.processed_files:
st.info(f"β
{file.name} has already been processed.")
continue
with st.expander(f"Processing {file.name}", expanded=True):
try:
st.info(f"π Reading file: {file.name}")
content = read_file_content(file)
interview_data = analyzer.extract_interview_data(content, file.name)
st.write(f"π Analyzing interview for: {interview_data['name']}")
with st.spinner('Analyzing interview...'):
analysis = analyzer.analyze_transcript(interview_data)
if analysis:
analyzer._validate_analysis_structure(analysis, interview_data)
st.session_state.analyses.append(analysis)
st.session_state.processed_files.add(file_id)
st.success(f"β
Analysis complete for {interview_data['name']}")
else:
st.error(f"β Failed to analyze {file.name}")
except Exception as e:
st.error(f"Error processing {file.name}: {str(e)}")
continue
if st.session_state.analyses:
st.header("π Analysis Results")
try:
summary_df = analyzer.generate_summary_table(st.session_state.analyses)
if confidence_threshold > 1:
summary_df = summary_df[summary_df['Confidence Score'] >= confidence_threshold]
st.subheader("π Summary of Analyses")
st.dataframe(
summary_df,
use_container_width=True,
hide_index=True
)
# Download Options
st.subheader("πΎ Download Results")
col1, col2 = st.columns(2)
with col1:
json_str = json.dumps(st.session_state.analyses, indent=2)
st.download_button(
label="π₯ Download Detailed Analysis (JSON)",
data=json_str,
file_name=f"interview_analysis_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json",
mime="application/json",
help="Download the complete analysis results in JSON format"
)
with col2:
csv = summary_df.to_csv(index=False)
st.download_button(
label="π₯ Download Summary (CSV)",
data=csv,
file_name=f"analysis_summary_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv",
mime="text/csv",
help="Download the summary table in CSV format"
)
# Detailed Analysis with Visualizations
if show_details:
st.header("π Detailed Analysis")
for idx, analysis in enumerate(st.session_state.analyses, 1):
with st.expander(
f"π Analysis {idx}: {analysis.get('interviewee', {}).get('name', 'Unknown')}",
expanded=False
):
analyzer.display_analysis_results(analysis)
# Comparative Analysis Dashboard
analyzer.comparative_dashboard()
# Chat Interface
analyzer.chat_interface()
# Clear Results Button
if st.button("ποΈ Clear All Results and Chat History"):
st.session_state.analyses = []
st.session_state.processed_files = set()
st.session_state.rate_limiter = RateLimiter()
st.session_state.chat_history = []
st.experimental_rerun()
# Instructions
st.header("βΉοΈ Instructions")
st.markdown("""
### How to Use:
1. **Enter your Gemini API key** in the sidebar.
2. **Upload** one or more interview transcript files (`.txt` or `.docx`).
3. **Wait** for the analysis to complete.
4. **View** results, explore detailed analyses, and download reports.
5. **Use the chat section** to ask specific questions about your uploaded files.
**Supported file formats:** `.txt`, `.docx`
""")
except Exception as e:
st.error("Error displaying results")
st.exception(e)
else:
st.info("π Upload your interview transcripts to begin analysis")
except Exception as e:
st.error("Critical Error")
st.exception(e)
st.warning("Please refresh the page and try again")
if __name__ == "__main__":
main()
|