pavlyhalim
commited on
Commit
·
98ae6d3
1
Parent(s):
9f5f3fe
Add application file
Browse files
app.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
3 |
+
import torch
|
4 |
+
import torch.nn.functional as F
|
5 |
+
|
6 |
+
# Load the tokenizer and model from HuggingFace Hub
|
7 |
+
@st.cache_resource(show_spinner=False)
|
8 |
+
def load_model():
|
9 |
+
model_name = "pavlyhalim/BERT_ALL_README"
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
11 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
12 |
+
model.eval()
|
13 |
+
return tokenizer, model
|
14 |
+
|
15 |
+
tokenizer, model = load_model()
|
16 |
+
|
17 |
+
st.title("Readability Score Predictor based on BERT")
|
18 |
+
|
19 |
+
st.write("""
|
20 |
+
Enter a sentence, and the model will predict its readability score (from 1 to 6).
|
21 |
+
""")
|
22 |
+
|
23 |
+
user_input = st.text_area("Enter your sentence here:", height=100)
|
24 |
+
|
25 |
+
if st.button("Predict Readability Score"):
|
26 |
+
if user_input.strip() == "":
|
27 |
+
st.warning("Please enter a sentence.")
|
28 |
+
else:
|
29 |
+
with st.spinner('Predicting...'):
|
30 |
+
inputs = tokenizer(
|
31 |
+
user_input,
|
32 |
+
return_tensors="pt",
|
33 |
+
padding=True,
|
34 |
+
truncation=True,
|
35 |
+
max_length=128
|
36 |
+
)
|
37 |
+
|
38 |
+
with torch.no_grad():
|
39 |
+
outputs = model(**inputs)
|
40 |
+
logits = outputs.logits
|
41 |
+
|
42 |
+
probabilities = F.softmax(logits, dim=1)
|
43 |
+
predicted_class = torch.argmax(probabilities, dim=1).item()
|
44 |
+
predicted_probability = probabilities[0][predicted_class].item()
|
45 |
+
|
46 |
+
predicted_label = predicted_class + 1
|
47 |
+
|
48 |
+
st.success(f"Predicted Readability Score: **{predicted_label}**")
|
49 |
+
st.write(f"Confidence: **{predicted_probability * 100:.2f}%**")
|
50 |
+
|
51 |
+
st.write("### Class Probabilities:")
|
52 |
+
for i, prob in enumerate(probabilities[0]):
|
53 |
+
label = i + 1
|
54 |
+
st.write(f"Score {label}: {prob.item() * 100:.2f}%")
|