import gradio as gr from transformers import pipeline import os from huggingface_hub import login login(token=os.getenv('HF_TOKEN')) def setup_pipeline(): # return pipeline( # "text-generation", # model="meta-llama/Llama-3.2-1B", # Smaller model suitable for CPU # device=-1 # Force CPU # ) return None def generate_recipe(dish_name): if not dish_name: return "Please enter a dish name" try: prompt = f"""Create a recipe for {dish_name} including: - Ingredients with quantities - Steps to cook - Cultural background""" result = generator(prompt, max_length=500, num_return_sequences=1) return result[0]['generated_text'] except Exception as e: return f"Error: {str(e)}" generator = setup_pipeline() demo = gr.Interface( fn=generate_recipe, inputs=gr.Textbox(label="Enter dish name"), outputs=gr.Textbox(label="Generated Recipe", lines=20), title="RecipeGenie", description="AI-powered recipe generator" ) if __name__ == "__main__": demo.launch()