Spaces:
Running
on
Zero
Running
on
Zero
from einops import rearrange, repeat | |
from diffusers.models.attention import _chunked_feed_forward | |
from diffusers.models.attention import * | |
from .mv_attention_processor import JointMVAttnProcessor2_0, MVAttnProcessor2_0 | |
# Copied from diffusers.models.attention.JointTransformerBlock | |
# The only modifications: `JointAttnProcessor2_0` -> `JointMVAttnProcessor2_0` | |
class JointMVTransformerBlock(nn.Module): | |
r""" | |
A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3. | |
Reference: https://arxiv.org/abs/2403.03206 | |
Parameters: | |
dim (`int`): The number of channels in the input and output. | |
num_attention_heads (`int`): The number of heads to use for multi-head attention. | |
attention_head_dim (`int`): The number of channels in each head. | |
context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the | |
processing of `context` conditions. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
num_attention_heads: int, | |
attention_head_dim: int, | |
context_pre_only: bool = False, | |
qk_norm: Optional[str] = None, | |
use_dual_attention: bool = False, | |
): | |
super().__init__() | |
self.use_dual_attention = use_dual_attention | |
self.context_pre_only = context_pre_only | |
context_norm_type = "ada_norm_continous" if context_pre_only else "ada_norm_zero" | |
if use_dual_attention: | |
self.norm1 = SD35AdaLayerNormZeroX(dim) | |
else: | |
self.norm1 = AdaLayerNormZero(dim) | |
if context_norm_type == "ada_norm_continous": | |
self.norm1_context = AdaLayerNormContinuous( | |
dim, dim, elementwise_affine=False, eps=1e-6, bias=True, norm_type="layer_norm" | |
) | |
elif context_norm_type == "ada_norm_zero": | |
self.norm1_context = AdaLayerNormZero(dim) | |
else: | |
raise ValueError( | |
f"Unknown context_norm_type: {context_norm_type}, currently only support `ada_norm_continous`, `ada_norm_zero`" | |
) | |
if hasattr(F, "scaled_dot_product_attention"): | |
# Multi-view Self-Attn | |
processor = JointMVAttnProcessor2_0() | |
else: | |
raise ValueError( | |
"The current PyTorch version does not support the `scaled_dot_product_attention` function." | |
) | |
self.attn = Attention( | |
query_dim=dim, | |
cross_attention_dim=None, | |
added_kv_proj_dim=dim, | |
dim_head=attention_head_dim, | |
heads=num_attention_heads, | |
out_dim=dim, | |
context_pre_only=context_pre_only, | |
bias=True, | |
processor=processor, | |
qk_norm=qk_norm, | |
eps=1e-6, | |
) | |
if use_dual_attention: | |
self.attn2 = Attention( | |
query_dim=dim, | |
cross_attention_dim=None, | |
dim_head=attention_head_dim, | |
heads=num_attention_heads, | |
out_dim=dim, | |
bias=True, | |
processor=processor, | |
qk_norm=qk_norm, | |
eps=1e-6, | |
) | |
else: | |
self.attn2 = None | |
self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) | |
self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate") | |
if not context_pre_only: | |
self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) | |
self.ff_context = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate") | |
else: | |
self.norm2_context = None | |
self.ff_context = None | |
# let chunk size default to None | |
self._chunk_size = None | |
self._chunk_dim = 0 | |
# Copied from diffusers.models.attention.BasicTransformerBlock.set_chunk_feed_forward | |
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0): | |
# Sets chunk feed-forward | |
self._chunk_size = chunk_size | |
self._chunk_dim = dim | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
encoder_hidden_states: torch.FloatTensor, | |
temb: torch.FloatTensor, | |
joint_attention_kwargs: Optional[Dict[str, Any]] = None, | |
): | |
num_views = joint_attention_kwargs.get("num_views", 1) | |
temb = repeat(temb, "b d -> (b v) d", v=num_views) | |
joint_attention_kwargs = joint_attention_kwargs or {} | |
if self.use_dual_attention: | |
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp, norm_hidden_states2, gate_msa2 = self.norm1( | |
hidden_states, emb=temb | |
) | |
else: | |
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb) | |
temb = rearrange(temb, "(b v) d -> b v d", v=num_views)[:, 0, :] # (B, D) | |
if self.context_pre_only: | |
norm_encoder_hidden_states = self.norm1_context(encoder_hidden_states, temb) | |
else: | |
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context( | |
encoder_hidden_states, emb=temb | |
) | |
# Attention. | |
attn_output, context_attn_output = self.attn( | |
hidden_states=norm_hidden_states, | |
encoder_hidden_states=norm_encoder_hidden_states, | |
**joint_attention_kwargs, | |
) | |
# Process attention outputs for the `hidden_states`. | |
attn_output = gate_msa.unsqueeze(1) * attn_output | |
hidden_states = hidden_states + attn_output | |
if self.use_dual_attention: | |
attn_output2 = self.attn2(hidden_states=norm_hidden_states2, **joint_attention_kwargs) | |
attn_output2 = gate_msa2.unsqueeze(1) * attn_output2 | |
hidden_states = hidden_states + attn_output2 | |
norm_hidden_states = self.norm2(hidden_states) | |
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] | |
if self._chunk_size is not None: | |
# "feed_forward_chunk_size" can be used to save memory | |
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size) | |
else: | |
ff_output = self.ff(norm_hidden_states) | |
ff_output = gate_mlp.unsqueeze(1) * ff_output | |
hidden_states = hidden_states + ff_output | |
# Process attention outputs for the `encoder_hidden_states`. | |
if self.context_pre_only: | |
encoder_hidden_states = None | |
else: | |
context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output | |
encoder_hidden_states = encoder_hidden_states + context_attn_output | |
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states) | |
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None] | |
if self._chunk_size is not None: | |
# "feed_forward_chunk_size" can be used to save memory | |
context_ff_output = _chunked_feed_forward( | |
self.ff_context, norm_encoder_hidden_states, self._chunk_dim, self._chunk_size | |
) | |
else: | |
context_ff_output = self.ff_context(norm_encoder_hidden_states) | |
encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output | |
return encoder_hidden_states, hidden_states | |
# Copied from diffusers.models.attention.BasicTransformerBlock | |
# The only modifications: `AttnProcessor2_0` -> `MVAttnProcessor2_0` | |
class BasicMVTransformerBlock(nn.Module): | |
r""" | |
A basic Transformer block. | |
Parameters: | |
dim (`int`): The number of channels in the input and output. | |
num_attention_heads (`int`): The number of heads to use for multi-head attention. | |
attention_head_dim (`int`): The number of channels in each head. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. | |
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. | |
num_embeds_ada_norm (: | |
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`. | |
attention_bias (: | |
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter. | |
only_cross_attention (`bool`, *optional*): | |
Whether to use only cross-attention layers. In this case two cross attention layers are used. | |
double_self_attention (`bool`, *optional*): | |
Whether to use two self-attention layers. In this case no cross attention layers are used. | |
upcast_attention (`bool`, *optional*): | |
Whether to upcast the attention computation to float32. This is useful for mixed precision training. | |
norm_elementwise_affine (`bool`, *optional*, defaults to `True`): | |
Whether to use learnable elementwise affine parameters for normalization. | |
norm_type (`str`, *optional*, defaults to `"layer_norm"`): | |
The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`. | |
final_dropout (`bool` *optional*, defaults to False): | |
Whether to apply a final dropout after the last feed-forward layer. | |
attention_type (`str`, *optional*, defaults to `"default"`): | |
The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`. | |
positional_embeddings (`str`, *optional*, defaults to `None`): | |
The type of positional embeddings to apply to. | |
num_positional_embeddings (`int`, *optional*, defaults to `None`): | |
The maximum number of positional embeddings to apply. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
num_attention_heads: int, | |
attention_head_dim: int, | |
dropout=0.0, | |
cross_attention_dim: Optional[int] = None, | |
activation_fn: str = "geglu", | |
num_embeds_ada_norm: Optional[int] = None, | |
attention_bias: bool = False, | |
only_cross_attention: bool = False, | |
double_self_attention: bool = False, | |
upcast_attention: bool = False, | |
norm_elementwise_affine: bool = True, | |
norm_type: str = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single', 'ada_norm_continuous', 'layer_norm_i2vgen' | |
norm_eps: float = 1e-5, | |
final_dropout: bool = False, | |
attention_type: str = "default", | |
positional_embeddings: Optional[str] = None, | |
num_positional_embeddings: Optional[int] = None, | |
ada_norm_continous_conditioning_embedding_dim: Optional[int] = None, | |
ada_norm_bias: Optional[int] = None, | |
ff_inner_dim: Optional[int] = None, | |
ff_bias: bool = True, | |
attention_out_bias: bool = True, | |
): | |
super().__init__() | |
self.dim = dim | |
self.num_attention_heads = num_attention_heads | |
self.attention_head_dim = attention_head_dim | |
self.dropout = dropout | |
self.cross_attention_dim = cross_attention_dim | |
self.activation_fn = activation_fn | |
self.attention_bias = attention_bias | |
self.double_self_attention = double_self_attention | |
self.norm_elementwise_affine = norm_elementwise_affine | |
self.positional_embeddings = positional_embeddings | |
self.num_positional_embeddings = num_positional_embeddings | |
self.only_cross_attention = only_cross_attention | |
# We keep these boolean flags for backward-compatibility. | |
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero" | |
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" | |
self.use_ada_layer_norm_single = norm_type == "ada_norm_single" | |
self.use_layer_norm = norm_type == "layer_norm" | |
self.use_ada_layer_norm_continuous = norm_type == "ada_norm_continuous" | |
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: | |
raise ValueError( | |
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to" | |
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}." | |
) | |
self.norm_type = norm_type | |
self.num_embeds_ada_norm = num_embeds_ada_norm | |
if positional_embeddings and (num_positional_embeddings is None): | |
raise ValueError( | |
"If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined." | |
) | |
if positional_embeddings == "sinusoidal": | |
self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings) | |
else: | |
self.pos_embed = None | |
# Define 3 blocks. Each block has its own normalization layer. | |
# 1. Self-Attn | |
if norm_type == "ada_norm": | |
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) | |
elif norm_type == "ada_norm_zero": | |
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm) | |
elif norm_type == "ada_norm_continuous": | |
self.norm1 = AdaLayerNormContinuous( | |
dim, | |
ada_norm_continous_conditioning_embedding_dim, | |
norm_elementwise_affine, | |
norm_eps, | |
ada_norm_bias, | |
"rms_norm", | |
) | |
else: | |
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) | |
self.attn1 = Attention( | |
query_dim=dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
cross_attention_dim=cross_attention_dim if only_cross_attention else None, | |
upcast_attention=upcast_attention, | |
out_bias=attention_out_bias, | |
# Multi-view Self-Attn | |
processor=MVAttnProcessor2_0(), | |
) | |
# 2. Cross-Attn | |
if cross_attention_dim is not None or double_self_attention: | |
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block. | |
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during | |
# the second cross attention block. | |
if norm_type == "ada_norm": | |
self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm) | |
elif norm_type == "ada_norm_continuous": | |
self.norm2 = AdaLayerNormContinuous( | |
dim, | |
ada_norm_continous_conditioning_embedding_dim, | |
norm_elementwise_affine, | |
norm_eps, | |
ada_norm_bias, | |
"rms_norm", | |
) | |
else: | |
self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine) | |
self.attn2 = Attention( | |
query_dim=dim, | |
cross_attention_dim=cross_attention_dim if not double_self_attention else None, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
upcast_attention=upcast_attention, | |
out_bias=attention_out_bias, | |
) # is self-attn if encoder_hidden_states is none | |
else: | |
if norm_type == "ada_norm_single": # For Latte | |
self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine) | |
else: | |
self.norm2 = None | |
self.attn2 = None | |
# 3. Feed-forward | |
if norm_type == "ada_norm_continuous": | |
self.norm3 = AdaLayerNormContinuous( | |
dim, | |
ada_norm_continous_conditioning_embedding_dim, | |
norm_elementwise_affine, | |
norm_eps, | |
ada_norm_bias, | |
"layer_norm", | |
) | |
elif norm_type in ["ada_norm_zero", "ada_norm", "layer_norm"]: | |
self.norm3 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine) | |
elif norm_type == "layer_norm_i2vgen": | |
self.norm3 = None | |
self.ff = FeedForward( | |
dim, | |
dropout=dropout, | |
activation_fn=activation_fn, | |
final_dropout=final_dropout, | |
inner_dim=ff_inner_dim, | |
bias=ff_bias, | |
) | |
# 4. Fuser | |
if attention_type == "gated" or attention_type == "gated-text-image": | |
self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim) | |
# 5. Scale-shift for PixArt-Alpha. | |
if norm_type == "ada_norm_single": | |
self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5) | |
# let chunk size default to None | |
self._chunk_size = None | |
self._chunk_dim = 0 | |
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0): | |
# Sets chunk feed-forward | |
self._chunk_size = chunk_size | |
self._chunk_dim = dim | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
encoder_attention_mask: Optional[torch.Tensor] = None, | |
timestep: Optional[torch.LongTensor] = None, | |
cross_attention_kwargs: Dict[str, Any] = None, | |
class_labels: Optional[torch.LongTensor] = None, | |
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, | |
) -> torch.Tensor: | |
if cross_attention_kwargs is not None: | |
if cross_attention_kwargs.get("scale", None) is not None: | |
logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.") | |
# Notice that normalization is always applied before the real computation in the following blocks. | |
# 0. Self-Attention | |
batch_size = hidden_states.shape[0] | |
if self.norm_type == "ada_norm": | |
norm_hidden_states = self.norm1(hidden_states, timestep) | |
elif self.norm_type == "ada_norm_zero": | |
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( | |
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype | |
) | |
elif self.norm_type in ["layer_norm", "layer_norm_i2vgen"]: | |
norm_hidden_states = self.norm1(hidden_states) | |
elif self.norm_type == "ada_norm_continuous": | |
norm_hidden_states = self.norm1(hidden_states, added_cond_kwargs["pooled_text_emb"]) | |
elif self.norm_type == "ada_norm_single": | |
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( | |
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1) | |
).chunk(6, dim=1) | |
norm_hidden_states = self.norm1(hidden_states) | |
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa | |
else: | |
raise ValueError("Incorrect norm used") | |
if self.pos_embed is not None: | |
norm_hidden_states = self.pos_embed(norm_hidden_states) | |
# 1. Prepare GLIGEN inputs | |
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {} | |
gligen_kwargs = cross_attention_kwargs.pop("gligen", None) | |
attn_output = self.attn1( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, | |
attention_mask=attention_mask, | |
**cross_attention_kwargs, | |
) | |
if self.norm_type == "ada_norm_zero": | |
attn_output = gate_msa.unsqueeze(1) * attn_output | |
elif self.norm_type == "ada_norm_single": | |
attn_output = gate_msa * attn_output | |
hidden_states = attn_output + hidden_states | |
if hidden_states.ndim == 4: | |
hidden_states = hidden_states.squeeze(1) | |
# 1.2 GLIGEN Control | |
if gligen_kwargs is not None: | |
hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"]) | |
# 3. Cross-Attention | |
if self.attn2 is not None: | |
if self.norm_type == "ada_norm": | |
norm_hidden_states = self.norm2(hidden_states, timestep) | |
elif self.norm_type in ["ada_norm_zero", "layer_norm", "layer_norm_i2vgen"]: | |
norm_hidden_states = self.norm2(hidden_states) | |
elif self.norm_type == "ada_norm_single": | |
# For PixArt norm2 isn't applied here: | |
# https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103 | |
norm_hidden_states = hidden_states | |
elif self.norm_type == "ada_norm_continuous": | |
norm_hidden_states = self.norm2(hidden_states, added_cond_kwargs["pooled_text_emb"]) | |
else: | |
raise ValueError("Incorrect norm") | |
if self.pos_embed is not None and self.norm_type != "ada_norm_single": | |
norm_hidden_states = self.pos_embed(norm_hidden_states) | |
# Not use `num_views` for cross-attention | |
_ = cross_attention_kwargs.pop("num_views", None) | |
attn_output = self.attn2( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=encoder_attention_mask, | |
**cross_attention_kwargs, | |
) | |
hidden_states = attn_output + hidden_states | |
# 4. Feed-forward | |
# i2vgen doesn't have this norm 🤷♂️ | |
if self.norm_type == "ada_norm_continuous": | |
norm_hidden_states = self.norm3(hidden_states, added_cond_kwargs["pooled_text_emb"]) | |
elif not self.norm_type == "ada_norm_single": | |
norm_hidden_states = self.norm3(hidden_states) | |
if self.norm_type == "ada_norm_zero": | |
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] | |
if self.norm_type == "ada_norm_single": | |
norm_hidden_states = self.norm2(hidden_states) | |
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp | |
if self._chunk_size is not None: | |
# "feed_forward_chunk_size" can be used to save memory | |
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size) | |
else: | |
ff_output = self.ff(norm_hidden_states) | |
if self.norm_type == "ada_norm_zero": | |
ff_output = gate_mlp.unsqueeze(1) * ff_output | |
elif self.norm_type == "ada_norm_single": | |
ff_output = gate_mlp * ff_output | |
hidden_states = ff_output + hidden_states | |
if hidden_states.ndim == 4: | |
hidden_states = hidden_states.squeeze(1) | |
return hidden_states | |