File size: 9,475 Bytes
476e0f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
from typing import *

from dataclasses import dataclass
from copy import deepcopy


HDFS_DIR = "<HDFS_DIR>"  # data is stored in an internal HDFS in this project


@dataclass
class Options:
    # Dataset
    input_res: int = 256
        ## Camera
    num_input_views: int = 4
    num_views: int = 8
    load_even_views: bool = True
    exclude_topdown_views: bool = False
    norm_camera: bool = True
    norm_radius: float = 1.4  # the min distance in GObjaverse (cf. `RichDreamer` Sec. 3.1); only used when `norm_camera` is True
    fxfy: float = 1422.222 / 1024  # for GObjaverse only (https://github.com/modelscope/richdreamer/issues/10#issuecomment-1890870640)
        ## Content
    load_albedo: bool = False
    load_normal: bool = True
    load_coord: bool = True
    load_mr: bool = False
    load_canny: bool = False
    load_depth: bool = False
    normalize_depth: bool = True  # to [0, 1]
    dataset_name: Literal[
        "gobj83k",
        "gobj265k",
        "gobj1m",
    ] = "gobj83k"
    dataset_size: int = None  # set later
    prompt_embed_dir: Optional[str] = None  # set later
        ## ParquetDataset
    file_dir_train: str = f"{HDFS_DIR}/GObjaverse_parquet"
    file_name_train: str = None  # set later
    file_dir_test: str = "/tmp/test_dataset"
    file_name_test: str = "GObjaverse-val"
    dataset_setup_script: str = f"mkdir -p /tmp/test_dataset && hdfs dfs -ls {HDFS_DIR}/GObjaverse_parquet/GObjaverse-val-* | grep '^-' | " + "awk '{print $8}' | xargs -n 1 -P 5 -I {} hdfs dfs -get {} /tmp/test_dataset"

    # GSRecon
    input_albedo: bool = False
    input_normal: bool = True
    input_coord: bool = True
    input_mr: bool = False
        ## Transformer
    llama_style: bool = True
    patch_size: int = 8
    dim: int = 512
    num_blocks: int = 12
    num_heads: int = 8
    grad_checkpoint: bool = True
        ## Rendering
    render_type: Literal[
        "default",
        "deferred",
    ] = "default"
    deferred_bp_patch_size: int = 64
    znear: float = 0.01
    zfar: float = 100.
    scale_min: float = 0.0005
    scale_max: float = 0.02

    # Elevation estimation
    elevest_backbone_name: Literal[
        "dinov2_vits14_reg",
        "dinov2_vitb14_reg",
        "dinov2_vitl14_reg",
    ] = "dinov2_vitb14_reg"
    freeze_backbone: bool = False
    ele_min: float = -40.  # actual min: -30.
    ele_max: float = 10.  # actual max: 5.
    elevest_num_classes: int = 25
    elevest_reg_weight: float = 1.

    # GSVAE
    vae_from_scratch: bool = False
    use_tinyae: bool = False
    freeze_encoder: bool = False
    use_tiny_decoder: bool = False
    scaling_factor: Optional[float] = None
    shift_factor: Optional[float] = None

    # GSDiff
    pretrained_model_name_or_path: Literal[
        "stable-diffusion-v1-5/stable-diffusion-v1-5",
        "stabilityai/stable-diffusion-2-1",
        "stabilityai/stable-diffusion-xl-base-1.0",
        "PixArt-alpha/PixArt-XL-2-256x256",
        "PixArt-alpha/PixArt-XL-2-512x512",
        "PixArt-alpha/PixArt-XL-2-1024-MS",
        "PixArt-alpha/PixArt-Sigma-XL-2-256x256",
        "PixArt-alpha/PixArt-Sigma-XL-2-512-MS",
        "PixArt-alpha/PixArt-Sigma-XL-2-1024-MS",
        "stabilityai/stable-diffusion-3-medium-diffusers",
        "stabilityai/stable-diffusion-3.5-medium",
        "stabilityai/stable-diffusion-3.5-large",
        "black-forest-labs/FLUX.1-dev",
        "madebyollin/sdxl-vae-fp16-fix",
        "lambdalabs/sd-image-variations-diffusers",
        "stabilityai/stable-diffusion-2-1-unclip",
        "chenguolin/sv3d-diffusers",
    ] = "stable-diffusion-v1-5/stable-diffusion-v1-5"
    load_fp16vae_for_sdxl: bool = True
        ## Config
    from_scratch: bool = False
    cfg_dropout_prob: float = 0.05  # actual prob is x2; see the training code
    snr_gamma: float = 0.  # Min-SNR trick; `0.` menas not used
    num_inference_steps: int = 20
    noise_scheduler_type: Literal[
        "ddim",
        "dpmsolver++",
        "sde-dpmsolver++",
    ] = "dpmsolver++"
    prediction_type: Optional[str] = None  # `None` means using default prediction type
    beta_schedule: Optional[str] = None  # `None` means using the default beta schedule
    edm_style_training: bool = False  # EDM scheduling; cf. https://arxiv.org/pdf/2206.00364
    common_tricks: bool = True  # cf. https://arxiv.org/pdf/2305.08891 (including: 1. trailing timestep spacing, 2. rescaling to zero snr)
            ### SD3; cf. https://arxiv.org/pdf/2403.03206
    weighting_scheme: Literal[
        "sigma_sqrt",
        "logit_normal",
        "mode",
        "cosmap",
    ] = "logit_normal"
    logit_mean: float = 0.
    logit_std: float = 1.
    mode_scale: float = 1.29
    precondition_outputs: bool = False  # whether prediction x_0
        ## Model
    trainable_modules: Optional[str] = None  # train all parameters if None
    name_lr_mult: Optional[str] = None
    lr_mult: float = 1.
            ### Conditioning
    zero_init_conv_in: bool = True  # whether zero_init new conv_in params
    view_concat_condition: bool = False  # `True` for image-cond
    input_concat_plucker: bool = True
    input_concat_binary_mask: bool = False
    num_cond_views: int = 1
            ### Inference
    init_std: float = 0.  # cf. Instant3D inference trick, `0.` means not used
    init_noise_strength: float = 0.98  # used with `init_std`; cf. Instant3D inference trick, `1.` means not used
    init_bg: float = 0.  # used with `init_std` and `init_noise_strength`; gray background for the initialization
            ### ControlNet
    controlnet_type: Literal[
        "normal",
        "depth",
        "canny",
    ] = "normal"
    controlnet_input_channels: int = 3
    guess_mode: bool = False
    controlnet_scale: float = 1.
        ## Rendering loss
    rendering_loss_prob: float = 0.
    snr_gamma_rendering: float = 0.  # Min-SNR trick for rendering loss; `0.` menas not used

    # Training
    chunk_size: int = 1  # chunk size for GSRecon and GSVAE inference to save memory
    coord_weight: float = 0.  # render coords for supervision
    normal_weight: float = 0.  # render normals for supervision
    recon_weight: float = 1.  # GSVAE reconstruction weight
    render_weight: float = 1.  # GSVAE rendering weight
    diffusion_weight: float = 1.  # GSDiff diffusion weight
        ## LPIPS
    lpips_resize: int = 256  # `0` means no resizing
    lpips_weight: float = 1.  # lpips weight in GSRecon, GSVAE, GSDiff rendering
    lpips_warmup_start: int = 0
    lpips_warmup_end: int = 0

    # Visualization
    vis_pseudo_images: bool = False  # decode Gaussian latents by the image decoder
    vis_coords: bool = False
    vis_normals: bool = False

    def __post_init__(self):
        if self.dataset_name == "gobj83k":
            self.dataset_size = 83296
            self.file_name_train = "GObjaverse-train-280k-83k"
        elif self.dataset_name == "gobj265k":
            self.dataset_size = 265232
            self.file_name_train = "GObjaverse-train-280k"
        else:
            raise ValueError(f"Unknown dataset name: {self.dataset_name}")


def _update_opt(opt: Options, **kwargs) -> Options:
    new_opt = deepcopy(opt)
    for k, v in kwargs.items():
        setattr(new_opt, k, v)
    return new_opt


# Set all options for different tasks and models
opt_dict: Dict[str, Options] = {}


# GRM
opt_dict["gsrecon"] = Options(dataset_name="gobj265k")


# Elevation estimation
opt_dict["elevest"] = Options(
    input_res=224,
    load_even_views=False,
    exclude_topdown_views=True,
    load_normal=False,
    load_coord=False,
    dataset_name="gobj265k",
    name_lr_mult="backbone",
    lr_mult=0.1,
)


# GSVAE
    ## SD-based
opt_dict["gsvae"] = Options(dataset_name="gobj265k")
    ## SDXL-based
opt_dict["gsvae_sdxl"] = _update_opt(
    opt_dict["gsvae"],
    pretrained_model_name_or_path="stabilityai/stable-diffusion-xl-base-1.0",
)
opt_dict["gsvae_sdxl_fp16"] = _update_opt(
    opt_dict["gsvae"],
    pretrained_model_name_or_path="madebyollin/sdxl-vae-fp16-fix",
)
    ## SD3-based
opt_dict["gsvae_sd3m"] = _update_opt(
    opt_dict["gsvae"],
    pretrained_model_name_or_path="stabilityai/stable-diffusion-3-medium-diffusers",
)
opt_dict["gsvae_sd35m"] = _update_opt(
    opt_dict["gsvae"],
    pretrained_model_name_or_path="stabilityai/stable-diffusion-3.5-medium",
)


# GSDiff
    ## SD15-based
opt_dict["gsdiff_sd15"] = Options(
    prompt_embed_dir="/tmp/GObjaverse_sd15_prompt_embeds",
    pretrained_model_name_or_path="stable-diffusion-v1-5/stable-diffusion-v1-5",
)
    ## SDXL-based
opt_dict["gsdiff_sdxl"] = Options(
    prompt_embed_dir="/tmp/GObjaverse_sdxl_prompt_embeds",
    pretrained_model_name_or_path="stabilityai/stable-diffusion-xl-base-1.0",
)
    ## PAA-based
opt_dict["gsdiff_paa"] = Options(
    prompt_embed_dir="/tmp/GObjaverse_paa_prompt_embeds",
    pretrained_model_name_or_path="PixArt-alpha/PixArt-XL-2-512x512",
)
    ## PAS-based
opt_dict["gsdiff_pas"] = Options(
    prompt_embed_dir="/tmp/GObjaverse_pas_prompt_embeds",
    pretrained_model_name_or_path="PixArt-alpha/PixArt-Sigma-XL-2-512-MS",
)
    ## SD3-based
opt_dict["gsdiff_sd3m"] = Options(
    prompt_embed_dir="/tmp/GObjaverse_sd3m_prompt_embeds",
    pretrained_model_name_or_path="stabilityai/stable-diffusion-3-medium-diffusers",
)
opt_dict["gsdiff_sd35m"] = Options(
    prompt_embed_dir="/tmp/GObjaverse_sd35m_prompt_embeds",
    pretrained_model_name_or_path="stabilityai/stable-diffusion-3.5-medium",
)